Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 96(2): 695-750, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26983799

RESUMO

Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.


Assuntos
Medo/fisiologia , Sistema Límbico/fisiologia , Consolidação da Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico , Extinção Psicológica , Hipocampo/fisiologia , Hormônios/fisiologia , Humanos , Plasticidade Neuronal , Neurotransmissores/fisiologia , Transtornos de Estresse Pós-Traumáticos/terapia , Sinapses/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(27): 16000-16008, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571910

RESUMO

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in mammals with 16 isoforms that differ in terms of catalytic activity as well as cellular and tissue distribution. CAs catalyze the conversion of CO2 to bicarbonate and protons and are involved in various physiological processes, including learning and memory. Here we report that the integrity of CA activity in the brain is necessary for the consolidation of fear extinction memory. We found that systemic administration of acetazolamide, a CA inhibitor, immediately after the extinction session dose-dependently impaired the consolidation of fear extinction memory of rats trained in contextual fear conditioning. d-phenylalanine, a CA activator, displayed an opposite action, whereas C18, a membrane-impermeable CA inhibitor that is unable to reach the brain tissue, had no effect. Simultaneous administration of acetazolamide fully prevented the procognitive effects of d-phenylalanine. Whereas d-phenylalanine potentiated extinction, acetazolamide impaired extinction also when infused locally into the ventromedial prefrontal cortex, basolateral amygdala, or hippocampal CA1 region. No effects were observed when acetazolamide or d-phenylalanine was infused locally into the substantia nigra pars compacta. Moreover, systemic administration of acetazolamide immediately after the extinction training session modulated c-Fos expression on a retention test in the ventromedial prefrontal cortex of rats trained in contextual fear conditioning. These findings reveal that the engagement of CAs in some brain regions is essential for providing the brain with the resilience necessary to ensure the consolidation of extinction of emotionally salient events.


Assuntos
Anidrases Carbônicas/metabolismo , Medo/fisiologia , Memória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Região CA1 Hipocampal/fisiologia , Emoções , Aprendizagem , Masculino , Camundongos , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
3.
Am J Physiol Cell Physiol ; 323(4): C1231-C1250, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938677

RESUMO

Tyrosine kinase inhibitors (TKIs) have emerged as a promising class of target-directed, small molecule inhibitors used to treat hematologic malignancies, inflammatory diseases, and autoimmune disorders. Recently, TKIs have also gained interest as potential antiplatelet-directed therapeutics that could be leveraged to reduce pathologic thrombus formation and atherothrombotic complications, while minimally affecting platelet hemostatic function. This review provides a mechanistic overview and summarizes the known effects of tyrosine kinase inhibitors on platelet signaling and function, detailing prominent platelet signaling pathways downstream of the glycoprotein VI (GPVI) receptor, integrin αIIbß3, and G protein-coupled receptors (GPCRs). This review focuses on mechanistic as well as clinically relevant and emerging TKIs targeting major families of tyrosine kinases including but not limited to Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (Syk), Src family kinases (SFKs), Janus kinases (JAK), and signal transducers and activators of transcription (STAT) and evaluates their effects on platelet aggregation and adhesion, granule secretion, receptor expression and activation, and protein phosphorylation events. In summation, this review highlights current advances and knowledge on the effects of select TKIs on platelet biology and furthers insight on signaling pathways that may represent novel druggable targets coupled to specific platelet functional responses.


Assuntos
Hemostáticos , Ativação Plaquetária , Tirosina Quinase da Agamaglobulinemia/metabolismo , Plaquetas/metabolismo , Hemostáticos/metabolismo , Hemostáticos/farmacologia , Janus Quinases/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase Syk/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo
4.
Am J Physiol Cell Physiol ; 322(3): C370-C381, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080922

RESUMO

Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.


Assuntos
Plaquetas/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Maconha Medicinal/administração & dosagem , Administração Oral , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Feminino , Macaca mulatta , Masculino , Oxilipinas/sangue , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Transdução de Sinais , Tromboxanos/sangue , Fatores de Tempo
5.
Blood ; 136(20): 2346-2358, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32640021

RESUMO

Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.


Assuntos
Algoritmos , Ativação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteômica/métodos , Animais , Humanos , Transdução de Sinais/fisiologia
6.
Platelets ; 33(3): 404-415, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-34097573

RESUMO

Several Janus kinase (JAK) inhibitors (jakinibs) have recently been approved to treat inflammatory, autoimmune and hematological conditions. Despite emerging roles for JAKs and downstream signal transducer and activator of transcription (STAT) proteins in platelets, it remains unknown whether jakinibs affect platelet function. Here, we profile platelet biochemical and physiological responses in vitro in the presence of five different clinically relevant jakinibs, including ruxolitinib, upadacitinib, oclacitinib, baricitinib and tofacitinib. Flow cytometry, microscopy and other assays found that potent JAK1/2 inhibitors baricitinib and ruxolitinib reduced platelet adhesion to collagen, as well as platelet aggregation, secretion and integrin αIIbß3 activation in response to the glycoprotein VI (GPVI) agonist collagen-related peptide (CRP-XL). Western blot analysis demonstrated that jakinibs reduced Akt phosphorylation and activation following GPVI activation, where ruxolitinib and baricitinib prevented DAPP1 phosphorylation. In contrast, jakinibs had no effects on platelet responses to thrombin. Inhibitors of GPVI and JAK signaling also abrogated platelet STAT5 phosphorylation following CRP-XL stimulation. Additional pharmacologic experiments supported roles for STAT5 in platelet secretion, integrin activation and cytoskeletal responses. Together, our results demonstrate that ruxolitinib and baricitinib have inhibitory effects on platelet function in vitro and support roles for JAK/STAT5 pathways in GPVI/ITAM mediated platelet function.


Assuntos
Azetidinas/uso terapêutico , Plaquetas/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Nitrilas/uso terapêutico , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/efeitos dos fármacos , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Azetidinas/farmacologia , Humanos , Inibidores de Janus Quinases/farmacologia , Nitrilas/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia
7.
Proc Natl Acad Sci U S A ; 116(19): 9644-9651, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010921

RESUMO

Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.


Assuntos
Cognição/efeitos dos fármacos , Dieta , Ácidos Graxos Ômega-3/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipocampo/fisiopatologia , Estresse Psicológico , Animais , Ansiedade/microbiologia , Ansiedade/fisiopatologia , Ansiedade/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/microbiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/prevenção & controle
8.
Proc Natl Acad Sci U S A ; 116(5): 1765-1769, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635411

RESUMO

Extinction of contextual fear conditioning (CFC) in the presence of a familiar nonfearful conspecific (social support), such as that of others tasks, can occur regardless of whether the original memory is retrieved during the extinction training. Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1-ß-d-ribofuranosylbenzimidazole infused immediately after extinction training into the ventromedial prefrontal cortex (vmPFC) but unlike regular CFC extinction not in the CA1 region of the dorsal hippocampus. So social support generates a form of learning that differs from extinction acquired without social support in terms of the brain structures involved. This finding may lead to a better understanding of the brain mechanisms involved in the social support of memories and in therapies for disorders related to dysfunctional fear memories. Thus, here we show that the consolidation of extinction memory with social support relies on vmPFC rather than hippocampus gene expression and ribosomal- and mammalian target of rapamycin-dependent protein synthesis. These results provide additional knowledge about the cellular mechanisms and brain structures involved on the effect of social support in changing behavior and fear extinction memory.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Anisomicina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ratos Wistar , Sirolimo/farmacologia , Apoio Social
9.
Neurobiol Learn Mem ; 180: 107423, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705861

RESUMO

Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 µg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Social/efeitos dos fármacos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Região CA1 Hipocampal/metabolismo , Consolidação da Memória/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Reconhecimento Psicológico/fisiologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
10.
Metab Brain Dis ; 36(3): 407-420, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411219

RESUMO

The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Trombina/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos
11.
Proc Natl Acad Sci U S A ; 115(10): E2403-E2409, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463708

RESUMO

Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-ß (Aß)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aß-induced oxidative stress and on impairments in learning and memory induced by Aß. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aß infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aß infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aß neurotoxicity in the AD model tested.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/toxicidade , Terapia por Exercício , Transtornos da Memória/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Exercício Físico , Hipocampo/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Aprendizagem em Labirinto , Memória , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Meio Social
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638942

RESUMO

Calcific aortic valve disease (CAVD) is an athero-inflammatory process. Growing evidence supports the inflammation-driven calcification model, mediated by cytokines such as interferons (IFNs) and tumor necrosis factor (TNF)-α. Our goal was investigating IFNs' effects in human aortic valve endothelial cells (VEC) and the potential differences between aortic (aVEC) and ventricular (vVEC) side cells. The endothelial phenotype was analyzed by Western blot, qPCR, ELISA, monocyte adhesion, and migration assays. In mixed VEC populations, IFNs promoted the activation of signal transducers and activators of transcription-1 and nuclear factor-κB, and the subsequent up-regulation of pro-inflammatory molecules. Side-specific VEC were activated with IFN-γ and TNF-α in an orbital shaker flow system. TNF-α, but not IFN-γ, induced hypoxia-inducible factor (HIF)-1α stabilization or endothelial nitric oxide synthase downregulation. Additionally, IFN-γ inhibited TNF-α-induced migration of aVEC. Also, IFN-γ triggered cytokine secretion and adhesion molecule expression in aVEC and vVEC. Finally, aVEC were more prone to cytokine-mediated monocyte adhesion under multiaxial flow conditions as compared with uniaxial flow. In conclusion, IFNs promote inflammation and reduce TNF-α-mediated migration in human VEC. Moreover, monocyte adhesion was higher in inflamed aVEC sheared under multiaxial flow, which may be relevant to understanding the initial stages of CAVD.


Assuntos
Valva Aórtica/metabolismo , Células Endoteliais/metabolismo , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/imunologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/imunologia , Valva Aórtica/patologia , Estenose da Valva Aórtica/imunologia , Calcinose/imunologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Transplante de Coração , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Células THP-1 , Transplantados , Fator de Necrose Tumoral alfa/farmacologia
13.
Neurobiol Learn Mem ; 168: 107153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881354

RESUMO

Social recognition memory (SRM) enables the distinction between familiar and strange conspecifics, a fundamental ability for sociable species, such as rodents and humans. There is mounting evidence that the medial prefrontal cortex plays a prominent role both in shaping social behavior and in recognition memory. Glutamate is the major excitatory neurotransmitter in the brain, and activity of its ionotropic receptors is known to mediate both synaptic plasticity and consolidation of various types of memories. However, whether these receptors are required in the medial prefrontal cortex (mPFC) for SRM consolidation remains elusive. To address this issue, we submitted rats to a social discrimination paradigm, administered infusions of NMDA- and AMPA/kainate-receptors antagonists into the prelimbic (PrL) subdivision of the mPFC at different post-encoding time points and evaluated long-term memory retention twenty-four hours later. We found that blocking NMDA receptors immediately after the sample phase, but not 3 h later, impaired SRM consolidation, whereas the blockade of AMPA/kainate receptors immediately and 3 h, but not 6 h after the sample phase, prevented long-term memory consolidation. These results highlight the importance of the mPFC in social cognition and may contribute towards the understanding of the dysfunctional social information processing that underlies multiple neuropsychiatric disorders.


Assuntos
Consolidação da Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Ionotrópicos de Glutamato/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Social , Animais , Discriminação Psicológica , Masculino , Ratos Wistar , Receptores de AMPA/fisiologia , Receptores de Ácido Caínico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
14.
J Sports Sci ; 38(22): 2620-2630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32686996

RESUMO

Introduction: The injury prevention and warm-up exercises programmes improve physical performance and injury ratio, but it is poorly investigated in amateur football. Objectives: To assess the effects of two warm-up multi-station programmes (IAI-Programme and FIFA11+) through JPS, LSDT and CMJ. Study design: Randomised controlled trial. Methods: 36 football players were randomised into 2 groups: IAI-Programme (n = 18) and FIFA11+ (n = 18) and performed the intervention protocol for 6 weeks. JPS, LSDT and CMJ were measured at baseline, after 6, 10 and 18 weeks (from baseline). The inter-group and intra-group differences were assessed by repeated-measures analysis of variance test (ANOVA). Results: Significant differences between groups were found after 18 weeks in the absolute angular error (-2.18[-4.33,-0.047], d = 0.69, p < 0.05) of the JPS and in the CMJ (p = 0.001, ŋ2p=,0.298) in favour of IAI-Programme when compared to FIFA11 +. No significant differences between groups were found in the LSDT. There were also intra-group differences observed in the LSDT in both groups. Conclusions: IAI-Programme can provide sensitive benefits with respect to the proprioceptive ability of knee flexion and CMJ than FIFA11 +. Both IAI-Programme and FIFA11+ present improvements in the dynamic postural control measured by the LSDT.


Assuntos
Desempenho Atlético/fisiologia , Articulação do Joelho/fisiologia , Equilíbrio Postural , Futebol/fisiologia , Exercício de Aquecimento/fisiologia , Adulto , Traumatismos em Atletas/prevenção & controle , Humanos , Masculino , Exercício Pliométrico , Futebol/lesões , Adulto Jovem
15.
Arterioscler Thromb Vasc Biol ; 38(9): 2148-2159, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026273

RESUMO

Objective- Calcific aortic valve disease is the most prevalent valvulopathy in Western countries. An unanticipated pathogenetic clue involving IFN (interferon) was disclosed by the finding of constitutive type I IFN activity associated with aortic valve calcification in children with the atypical Singleton-Merten syndrome. On this basis, the role of type I IFN on inflammation and calcification in human aortic valve interstitial cells (AVIC) was examined. Approach and Results- IFN-α was weakly proinflammatory but potentiated lipopolysaccharide-mediated activation of NF (nuclear factor)-κB and the ensuing induction of proinflammatory molecules in human AVIC. Stimulation with IFN-α and in combination with lipopolysaccharide promoted osteoblast-like differentiation characterized by increased osteoblastic gene expression, BMP (bone morphogenetic protein)-2 secretion, and ectopic phosphatase activity. Sex differences were observed. Likewise, IFN-α treatment of human AVICs in osteogenic medium resulted in increased formation of calcific nodules. Strikingly, IFN-α-mediated calcification was significantly higher in AVICs from males, and was blocked by tofacitinib, a JAK (Janus kinase) inhibitor, and by a BMP antagonist. A female-specific protective mechanism involving the activation of PI3K-Akt (protein kinase B) pathways and cell survival was disclosed. Females exhibited higher levels of BCL2 in valve cells and tissues and lower annexin V staining on cell stimulation. Conclusions- IFN-α acts as a proinflammatory and pro-osteogenic cytokine in AVICs, its effects being potentiated by lipopolysaccharide. Results also uncovered sex differences with lower responses in female AVICs and sex-specific mechanisms involving apoptosis. Data point to JAK/STAT (signal transducer and activator of transcription) system as a potential therapeutic target for calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/metabolismo , Inibidores de Janus Quinases/farmacologia , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/patologia , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Osteoblastos/fisiologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição STAT/metabolismo , Fatores Sexuais , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(33): E4914-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482097

RESUMO

Social recognition memory (SRM) is crucial for reproduction, forming social groups, and species survival. Despite its importance, SRM is still relatively little studied. Here we examine the participation of the CA1 region of the dorsal hippocampus (CA1) and the basolateral amygdala (BLA) and that of dopaminergic, noradrenergic, and histaminergic systems in both structures in the consolidation of SRM. Male Wistar rats received intra-CA1 or intra-BLA infusions of different drugs immediately after the sample phase of a social discrimination task and 24-h later were subjected to a 5-min retention test. Animals treated with the protein synthesis inhibitor, anisomycin, into either the CA1 or BLA were unable to recognize the previously exposed juvenile (familiar) during the retention test. When infused into the CA1, the ß-adrenoreceptor agonist, isoproterenol, the D1/D5 dopaminergic receptor antagonist, SCH23390, and the H2 histaminergic receptor antagonist, ranitidine, also hindered the recognition of the familiar juvenile 24-h later. The latter drug effects were more intense in the CA1 than in the BLA. When infused into the BLA, the ß-adrenoreceptor antagonist, timolol, the D1/D5 dopamine receptor agonist, SKF38393, and the H2 histaminergic receptor agonist, ranitidine, also hindered recognition of the familiar juvenile 24-h later. In all cases, the impairment to recognize the familiar juvenile was abolished by the coinfusion of agonist plus antagonist. Clearly, both the CA1 and BLA, probably in that order, play major roles in the consolidation of SRM, but these roles are different in each structure vis-à-vis the involvement of the ß-noradrenergic, D1/D5-dopaminergic, and H2-histaminergic receptors therein.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Consolidação da Memória , Neurotransmissores/fisiologia , Comportamento Social , Animais , Masculino , Ratos , Ratos Wistar , Receptores Adrenérgicos/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores Histamínicos H2/fisiologia
17.
Proc Natl Acad Sci U S A ; 113(19): E2714-20, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118833

RESUMO

Retrieval represents a dynamic process that may require neuromodulatory signaling. Here, we report that the integrity of the brain histaminergic system is necessary for retrieval of inhibitory avoidance (IA) memory, because rats depleted of histamine through lateral ventricle injections of α-fluoromethylhistidine (a-FMHis), a suicide inhibitor of histidine decarboxylase, displayed impaired IA memory when tested 2 d after training. a-FMHis was administered 24 h after training, when IA memory trace was already formed. Infusion of histamine in hippocampal CA1 of brain histamine-depleted rats (hence, amnesic) 10 min before the retention test restored IA memory but was ineffective when given in the basolateral amygdala (BLA) or the ventral medial prefrontal cortex (vmPFC). Intra-CA1 injections of selective H1 and H2 receptor agonists showed that histamine exerted its effect by activating the H1 receptor. Noteworthy, the H1 receptor antagonist pyrilamine disrupted IA memory retrieval in rats, thus strongly supporting an active involvement of endogenous histamine; 90 min after the retention test, c-Fos-positive neurons were significantly fewer in the CA1s of a-FMHis-treated rats that displayed amnesia compared with in the control group. We also found reduced levels of phosphorylated cAMP-responsive element binding protein (pCREB) in the CA1s of a-FMHis-treated animals compared with in controls. Increases in pCREB levels are associated with retrieval of associated memories. Targeting the histaminergic system may modify the retrieval of emotional memory; hence, histaminergic ligands might reduce dysfunctional aversive memories and improve the efficacy of exposure psychotherapies.


Assuntos
Aprendizagem da Esquiva/fisiologia , Hipocampo/fisiologia , Histamina/metabolismo , Inibição Psicológica , Rememoração Mental/fisiologia , Receptores Histamínicos H1/metabolismo , Animais , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Wistar
18.
Neurobiol Learn Mem ; 149: 77-83, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29408055

RESUMO

Methylphenidate (MPH) is a widely prescribed drug for the treatment of attention-deficit hyperactivity disorder. Findings in the literature suggest that the effects of MPH on memory may result from increased extracellular levels of norepinephrine (NE) and dopamine (DA). Here, we report that the systemic administration of MPH before the acquisition phase in a social discrimination task impaired the retrieval of the social recognition memory (SRM), but made it state-dependent: another administration of MPH before the retention test recovered the SRM. We observed that the induction of state dependency by MPH relies on the ventromedial prefrontal cortex (vmPFC), but not on the CA1 region of the hippocampus (CA1). Also, the inhibitors of NE and DA, nisoxetine and GBR12909, respectively, restored the SRM when infused into the vmPFC. Only the GBR12909 was able to restore the SRM in the CA1, whereas nisoxetine could not restore and even caused an impairment on memory retrieval when infused alone before the retention test. The data suggest that the state-dependence of SRM induced by MPH depends on an influence of both catecholamines on the vmPFC, while NE inhibits the retrieval of SRM on the hippocampus.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Hipocampo/efeitos dos fármacos , Metilfenidato/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Animais , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Proc Natl Acad Sci U S A ; 112(2): E230-3, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25550507

RESUMO

In the present study we test the hypothesis that extinction is not a consequence of retrieval in unreinforced conditioned stimulus (CS) presentation but the mere perception of the CS in the absence of a conditioned response. Animals with cannulae implanted in the CA1 region of hippocampus were subjected to extinction of contextual fear conditioning. Muscimol infused intra-CA1 before an extinction training session of contextual fear conditioning (CFC) blocks retrieval but not consolidation of extinction measured 24 h later. Additionally, this inhibition of retrieval does not affect early persistence of extinction when tested 7 d later or its spontaneous recovery after 2 wk. Furthermore, both anisomycin, an inhibitor of ribosomal protein synthesis, and rapamycin, an inhibitor of extraribosomal protein synthesis, given into the CA1, impair extinction of CFC regardless of whether its retrieval was blocked by muscimol. Therefore, retrieval performance in the first unreinforced session is not necessary for the installation, maintenance, or spontaneous recovery of extinction of CFC.


Assuntos
Extinção Psicológica/fisiologia , Aprendizagem/fisiologia , Animais , Anisomicina/administração & dosagem , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Condicionamento Psicológico/fisiologia , Extinção Psicológica/efeitos dos fármacos , Medo/fisiologia , Medo/psicologia , Agonistas de Receptores de GABA-A/administração & dosagem , Aprendizagem/efeitos dos fármacos , Masculino , Modelos Neurológicos , Modelos Psicológicos , Muscimol/administração & dosagem , Inibidores da Síntese de Proteínas/administração & dosagem , Ratos , Ratos Wistar , Sirolimo/administração & dosagem
20.
Proc Natl Acad Sci U S A ; 112(13): E1652-8, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775606

RESUMO

Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors.


Assuntos
Extinção Psicológica , Medo , Hipocampo/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Anisomicina/química , Comportamento Animal , Benzazepinas/química , Carbazóis/química , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Dopamina/química , Aprendizagem , Masculino , Memória , Transtornos da Memória/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Receptores de Dopamina D5/metabolismo , Estresse Fisiológico , Tionucleotídeos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA