RESUMO
OBJECTIVE: Dysregulation of Fibroblast Growth Factor 10 (FGF10), a member of the family of Fibroblast Growth Factor (FGF) proteins, has been implicated in craniofacial and dental anomalies, including craniosynostosis, cleft palate, and Lacrimo-Auriculo-Dento-Digital Syndrome. The aim of this murine study was to assess the craniofacial and dental phenotypes associated with a heterozygous FGF10 gene (FGF10+/- ) mutation at skeletal maturity. METHODS: Skulls of 40 skeletally mature mice, comprising two genotypes (heterozygous FGF10+/- mutation, n = 22; wildtype, n = 18) and two sexes (male, n = 23; female, n = 17), were subjected to micro-computed tomography. Landmark-based linear dimensions were measured for the cranial vault, maxilla, mandible, and first molar teeth. Multivariate analysis of variance was performed to assess whether there were significant differences in the craniofacial and dental structures between genotypes and sexes. RESULTS: The craniomaxillary skeleton and the first molar teeth were smaller in the FGF10+/- mice (P < .05), but the mandible was unaffected. Sex did not have a significant effect on these structures (P > .05). Cranial sutural defects were noted in 5/22 (22.7%) mutant versus 2/18 (11.1%) wildtype mice, and cleft palate in only one (4.5%) mutant mouse. None of the mice displayed craniosynostosis, expansive bony lesions, bifid condyles, or impacted teeth. CONCLUSION: The FGF10+/- mutation was associated with craniomaxillary skeletal hypoplasia that probably arose from deficient (delayed) intramembranous ossification of the sutured bones. Overall, the skeletal and dental data suggest that the FGF10 gene plays an important role in the aetiology of craniofacial dysmorphology and malocclusion.
Assuntos
Fissura Palatina , Anormalidades Craniofaciais , Craniossinostoses , Camundongos , Masculino , Feminino , Animais , Fissura Palatina/genética , Microtomografia por Raio-X , Fator 10 de Crescimento de Fibroblastos/genética , Modelos Animais de Doenças , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/genética , Craniossinostoses/genética , Mutação/genéticaRESUMO
Palmitoylation is the post-translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate-Histidine-Histidine-Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl-transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont-expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite-specific organelles such as the rhoptries and inner membrane complex. Knock-out studies identified individual DHHCs that may be essential for blood-stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood-stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission-blocking target. The localization and stage-specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.
Assuntos
Aciltransferases/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Aciltransferases/química , Sequência de Aminoácidos , Eritrócitos/parasitologia , Células HEK293 , Humanos , Lipoilação , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química , Esquizontes/fisiologia , Especificidade por SubstratoRESUMO
OBJECTIVE: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. APPROACH AND RESULTS: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. CONCLUSIONS: Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists.
Assuntos
Plaquetas/metabolismo , Ativação Plaquetária , Receptores de Trombina/metabolismo , Idoso , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Simulação por Computador , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Inglaterra , Feminino , Genótipo , Glicosilação , Células HEK293 , Humanos , Ligação de Hidrogênio , Lactonas/farmacologia , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Peptídeos/farmacologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Transporte Proteico , Piridinas/farmacologia , Receptor PAR-1/efeitos dos fármacos , Receptor PAR-1/metabolismo , Receptores de Trombina/química , Receptores de Trombina/efeitos dos fármacos , Receptores de Trombina/genética , Relação Estrutura-Atividade , Trombina/farmacologia , TransfecçãoRESUMO
We present a systematic computational analysis of the conformations and stacking interactions of a set of 18 saddle-shaped, contorted polycyclic aromatic compounds at the B97-D3M(BJ)/TZV(2d,2p)//B97-D/TZV(2d,2p) level of theory. These doubly-concave systems offer a means of tuning the strength of stacking interactions through variations in molecular curvature, and understanding the intermolecular non-covalent interactions exhibited by these systems will aid the design of contorted polycyclic systems with precisely defined packing in the solid state. Computations reveal wide variations in both the nature of the low-lying conformations and the stacking affinities of these systems. In particular, the introduction of both thiophene rings around the periphery of these systems and the incorporation of B and N atoms into the coronene core can greatly enhance their tendency to form strongly stacked dimers. Overall, these data provide a reminder that curvature does not always lead to stronger stacking interactions.
RESUMO
Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167.
Assuntos
Transtornos Plaquetários/diagnóstico , Monitoramento de Medicamentos/métodos , Hemorragia/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Ativação Plaquetária/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Adulto , Transtornos Plaquetários/sangue , Transtornos Plaquetários/genética , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Feminino , Estudos de Associação Genética , Voluntários Saudáveis , Hemorragia/sangue , Hemorragia/fisiopatologia , Humanos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Valor Preditivo dos Testes , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Sensibilidade e Especificidade , Adulto JovemRESUMO
Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to occupy a dynamic space that fine-tunes biological activity and thus establishes the means to engineer allosteric mechanisms driven by low-frequency dynamics.
Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Regulação Alostérica/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Sítios de Ligação , Corynebacterium glutamicum/metabolismo , Cristalografia por Raios X , Proteína Receptora de AMP Cíclico/ultraestrutura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Modelos Moleculares , Ligação Proteica/fisiologia , Conformação Proteica , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/classificaçãoRESUMO
Kinetic Monte Carlo simulations are used to examine the effect of high-energy, 'hot' delocalised charge transfer (HCT) states for donor:acceptor and mixed:aggregate blends, the latter relating to polymer:fullerene photovoltaic devices. Increased fullerene aggregation is shown to enhance charge generation and short-circuit device current - largely due to the increased production of HCT states at the aggregate interface. However, the instances where HCT states are predicted to give internal quantum efficiencies in the region of 50% do not correspond to HCT delocalisation or electron mobility measured in experiments. These data therefore suggest that HCT states are not the primary cause of high quantum efficiencies in some polymer:fullerene OPVs. Instead it is argued that HCT states are responsible for the fast charge generation seen in spectroscopy, but that regional variation in energy levels are the cause of long-term, efficient free-charge generation.
RESUMO
BACKGROUND: The cause of duodenal atresia (DA) is not known. Tandler's "solid cord" hypothesis conflicts with current biological evidence. In humans, a genetic aetiology is supported by the association with Trisomy 21. Interruption of Fgf10 is the strongest genetic link to DA in mice, demonstrating an increased incidence and severity as embryos mature. This project aimed to develop an organoid model to facilitate ex vivo DA research on the FGF10/FGFR2b signalling pathway. We hypothesised that DA morphology represents an evolving spectrum of disease and that Fgf10 knockout organoids would vary in growth pattern compared to wild-type. METHODS: Organoids were cultured from the duodenum of E12.5 Fgf10 knockout, heterozygous and wild-type embryos, using an air-liquid interface with Growth Factor reduced Matrigel. Organoids were photographed every 48 h to observe growth. Organoids were isolated and fixed after 14 days, then stained with DAPI, KI-67, and cytokeratin to demonstrate proliferation and differentiation. RESULTS: Wild-type duodenum developed into crypt-forming organoids. Fgf10 heterozygous duodenum failed to progress beyond the development stage of spheroids. Fgf10 knockout duodenum failed to demonstrate any growth. Wholemount staining showed the greatest cell proliferation and differentiation in wild-type tissue. CONCLUSION: This research presents a novel concept for the growth of embryonic gastrointestinal tissue to inform normal biology. The small sample numbers and restricted culture duration limit longer-term growth analysis. While this model serves as a potential ex vivo setting for future research, that research should consider organoid models with greater standardisation and other gastrointestinal regions. LEVEL OF EVIDENCE: Animal/laboratory study.
Assuntos
Duodeno , Fator 10 de Crescimento de Fibroblastos , Atresia Intestinal , Camundongos Knockout , Organoides , Atresia Intestinal/embriologia , Animais , Fator 10 de Crescimento de Fibroblastos/genética , Camundongos , Duodeno/embriologia , Duodeno/anormalidades , Técnicas de Cultura de Órgãos/métodos , Obstrução Duodenal/embriologia , Obstrução Duodenal/genética , Proliferação de Células , Transdução de Sinais , Diferenciação Celular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genéticaRESUMO
BACKGROUND: Hermansky-Pudlak syndrome 2 (HPS2; OMIM #608233) is a rare, autosomal recessive disorder caused by loss-of-function genetic variations affecting AP3B1, which encodes the ß3A subunit of the adaptor-related protein complex 3 (AP3). Phenotypic characteristics include reduced pigmentation, absent platelet dense granule secretion, neutropenia and reduced cytotoxic T lymphocyte (CTL) and natural killer (NK) cell function. To date HPS2 has been associated with non-synonymous, stop-gain or deletion-insertion nucleotide variations within the coding region of AP3B1. CASE PRESENTATION: We describe a consanguineous female infant with reduced pigmentation, neutropenia and recurrent infections. Platelets displayed reduced aggregation and absent ATP secretion in response to collagen and ADP, indicating a platelet dense granule defect. There was increased basal surface expression of CD107a (lysosome-associated membrane protein 1(LAMP-1)) on NK cells and CTLs from the study subject and a smaller increase in the percentage of CD107a positive cells after stimulation compared to most healthy controls. Immunoblotting of protein extracts from EBV-transformed lymphoblasts from the index case showed absent expression of full-length AP-3 ß3A subunit protein, confirming a phenotypic diagnosis of HPS2.The index case displayed a homozygous pericentric inv(5)(p15.1q14.1), which was also detected as a heterozygous defect in both parents of the index case. No loss of genetic material was demonstrated by microarray comparative genome hybridisation at 60kb resolution. Fluorescence in-situ hybridisation using the 189.6kb probe RP11-422I12, which maps to 5q14.1, demonstrated dual hybridisation to both 5q14.1 and 5p15.1 regions of the inverted Chr5. The RP11-422I12 probe maps from intron 1 to intron 16 of AP3B1, thus localising the 5q inversion breakpoint to within AP3B1. The probe RP11-211K15, which corresponds to an intergenic region on 5p also showed dual hybridisation, enabling localisation of the 5p inversion breakpoint. CONCLUSION: This case report extends the phenotypic description of the very rare disorder HPS2. Our demonstration of a homozygous Chr5 inversion predicted to disrupt AP3B1 gene provides a novel pathogenic mechanism for this disorder.
Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Cromossomos Humanos Par 5/genética , Síndrome de Hermanski-Pudlak/genética , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Inversão Cromossômica , Feminino , Genes , Síndrome de Hermanski-Pudlak/patologia , Homozigoto , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Lactente , Células Matadoras Naturais/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Fenótipo , Pigmentação/genética , Subunidades Proteicas/metabolismo , Linfócitos T Citotóxicos/metabolismoRESUMO
BACKGROUND: Plasmodium falciparum parasites export more than 400 proteins into the cytosol of their host erythrocytes. These exported proteins catalyse the formation of knobs on the erythrocyte plasma membrane and an overall increase in erythrocyte rigidity, presumably by modulating the endogenous erythrocyte cytoskeleton. In uninfected erythrocytes, Band 4.1 (4.1R) plays a key role in regulating erythrocyte shape by interacting with multiple proteins through the three lobes of its cloverleaf-shaped N-terminal domain. In P. falciparum-infected erythrocytes, the C-lobe of 4.1R interacts with the P. falciparum protein mature parasite-infected erythrocyte surface antigen (MESA), but it is not currently known whether other P. falciparum proteins bind to other lobes of the 4.1R N-terminal domain. METHODS: In order to identify novel 4.1R interacting proteins, a yeast two-hybrid screen was performed with a fragment of 4.1R containing both the N- and α-lobes. Positive interactions were confirmed and investigated using site-directed mutagenesis, and antibodies were raised against the interacting partner to characterise it's expression and distribution in P. falciparum infected erythrocytes. RESULTS: Yeast two-hybrid screening identified a positive interaction between the 4.1R N- and α-lobes and PF3D7_0402000. PF3D7_0402000 is a member of a large family of exported proteins that share a domain of unknown function, the PHIST domain. Domain mapping and site-directed mutagenesis established that it is the PHIST domain of PF3D7_0402000 that interacts with 4.1R. Native PF3D7_0402000 is localized at the parasitophorous vacuole membrane (PVM), and colocalizes with a subpopulation of 4.1R. DISCUSSION: The function of the majority of P. falciparum exported proteins, including most members of the PHIST family, is unknown, and in only a handful of cases has a direct interaction between P. falciparum-exported proteins and components of the erythrocyte cytoskeleton been established. The interaction between 4.1R and PF3D7_0402000, and localization of PF3D7_0402000 with a sub-population of 4.1R at the PVM could indicate a role in modulating PVM structure. Further investigation into the mechanisms for 4.1R recruitment is needed. CONCLUSION: PF3D7_0402000 was identified as a new binding partner for the major erythrocyte cytoskeletal protein, 4.1R. This interaction is consistent with a growing body of literature that suggests the PHIST family members function by interacting directly with erythrocyte proteins.
Assuntos
Membrana Eritrocítica/metabolismo , Interações Hospedeiro-Parasita , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Análise Mutacional de DNA , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/genética , Técnicas do Sistema de Duplo-HíbridoRESUMO
Trapeziectomy, by itself or combined with ligament reconstruction/interposition arthroplasty, is commonly performed for advanced trapezial-metacarpal arthritis. Several methods and materials, both autogenous and artificial, are commonly used for ligament reconstruction and interposition arthroplasty. Harvesting autologous tendons adds to operative time and could increase potential surgical complications. Using an artificial material would, in theory, avoid some of these problems. However, this approach is not without its problems. We present a case of index metacarpal fracture after using the Arthrex Mini TightRope (Arthrex, Naples, FL) suture button fixation of the thumb and index metacarpals after complete trapeziectomy.
Assuntos
Fraturas Ósseas/etiologia , Ossos Metacarpais/lesões , Osteoartrite/cirurgia , Implantação de Prótese/efeitos adversos , Polegar/lesões , Trapézio/cirurgia , Adulto , Feminino , Fixação Interna de Fraturas , Humanos , Próteses e Implantes/efeitos adversos , Reoperação , Polegar/cirurgiaRESUMO
Hermansky Pudlak syndrome type 2 (HPS2) is a rare disorder associated with mutations in the Adaptor Protein 3 (AP-3) complex, which is involved in sorting transmembrane proteins to lysosomes and related organelles. We now report 2 unrelated subjects with HPS2 who show a characteristic clinical phenotype of oculocutaneous albinism, platelet and T-lymphocyte dysfunction and neutropenia. The subjects were homozygous for different deletions within AP3B1 (g.del180242-180866, c.del153-156), which encodes the AP-3beta3A subunit, resulting in frame shifts and introduction of nonsense substitutions (p.E693fsX13, p.E52fsX11). In the subject with p.E693fsX13, this resulted in expression of a truncated variant beta3A protein. Cytotoxic T-lymphocyte (CTL) clones from both study subjects showed increased cell-surface expression of CD63 and reduced cytotoxicity. Platelets showed impaired aggregation and reduced uptake of (3)H-serotonin. These findings are consistent with CTL granule and platelet dense granule defects, respectively. This report extends the clinical and laboratory description of HPS2.
Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Síndrome de Hermanski-Pudlak/genética , Mutação , Albinismo Oculocutâneo/genética , Criança , Feminino , Humanos , Lactente , Masculino , Fenótipo , Testes de Função Plaquetária , Linfócitos T Citotóxicos/metabolismoRESUMO
PURPOSE: The aim of this study was to determine long term quality of life (QoL) outcome for children who underwent surgery for duodenal atresia (DA). METHODS: Patients were identified from a prospective database of neonatal DA cases managed at a tertiary pediatric surgical centre. The QoL was measured using the validated PedsQL™ 4.0 core score and PedsQL™ gastrointestinal module; higher score equates to better QoL. Participants' scores were compared to published control cohorts, age-matching the core score. Trisomy 21 was identified a priori as a possible confounder, informing subgroup analyses for children with and without trisomy 21. RESULTS: Fifty-five families were invited to participate, with 38 surveys returned (39% male; median age 6.7y, range 2.7-17.3y). Seven participants had trisomy 21. There were no differences in QoL measures between all DA participants and controls. The PedsQL™ core score was significantly lower for DA participants with trisomy 21, but there was no accompanying difference in PedsQL™ gastrointestinal score. CONCLUSIONS: Children undergoing DA surgery in the neonatal period typically grow up to have a QoL comparable to a healthy population. Children with DA and trisomy 21 were more likely to have reduced overall QoL, albeit without an associated difference in gastrointestinal QoL score. LEVEL OF EVIDENCE: Prognosis study - level II (prospective cohort study).
Assuntos
Obstrução Duodenal , Atresia Intestinal , Qualidade de Vida , Adolescente , Criança , Pré-Escolar , Síndrome de Down/complicações , Obstrução Duodenal/fisiopatologia , Obstrução Duodenal/cirurgia , Feminino , Humanos , Atresia Intestinal/fisiopatologia , Atresia Intestinal/cirurgia , Masculino , Estudos ProspectivosRESUMO
INTRODUCTION: Duodenal atresia (DA) is a congenital bowel obstruction requiring major surgery in the first week of life. Three morphological phenotypes are described, reflecting increasing degrees of obstruction and discontinuity of the duodenum. The cause of DA is not known. Tandler's original "solid cord" hypothesis conflicts with recent biological evidence, and is unable to account for differing DA types. In humans, a genetic etiology is supported by the association between Trisomy 21 and DA, and reports of familial inheritance patterns. Interruption of FGF10/FGFR2b signaling is the best demonstrated genetic link to DA in mice, with 35-75% of homozygous knockout embryos developing DA. PURPOSE: This review examines the current evidence surrounding the etiology of DA. We focus on research regarding FGF10/FGFR2b signaling and its role in duodenal and other intestinal atresia. Further, we outline planned future research in this area, that we consider necessary to validate and better understand this murine model in order to successfully translate this research into clinical practice. CONCLUSION: Determining the etiology of DA in humans is a clinical and scientific imperative. Fgf10/Fgfr2b murine models represent current science's best key to unlocking this mystery. However, further research is required to understand the complex role of FGF10/FGFR2b signaling in DA development. Such complexity is expected, given the lethality of their associated defects makes ubiquitous interruption of either Fgf10 or Fgfr2b genes an unlikely cause of DA in humans. Rather, local or tissue-specific mutation in Fgf10, Fgfr2b, or their downstream targets, is the hypothesized basis of DA etiology.
RESUMO
This article presents raw data obtained from a prospectively collected database of children with duodenal atresia at tertiary pediatric surgery hospital. For all potential participants, pertinent demographic, clinical and operative data was obtained from the database. Potential participants were then contacted and invited to complete a Pediatric Quality of Life Inventory (PedsQL™) 4.0 core score and gastrointestinal module questionnaires. Participant's response to each item in the questionnaires is provided, as well as their calculated health related quality of life scores. Data has the potential to be reused in future studies examining quality of life in duodenal atresia, paediatric gastrointestinal conditions, surgical neonatal conditions and children with trisomy 21. Further analysis and discussion is contained in related research article titled "Quality of life outcomes in children born with duodenal atresia" [1].
RESUMO
Focal adhesion kinase (FAK) is activated in human platelets downstream of integrins, e.g. alpha(IIb)beta(3), and other adhesion receptors e.g. GPVI. Mice in which platelets lack FAK have been shown to exhibit extended bleeding times and their platelets have been shown to display decreased spreading on fibrinogen-coated surfaces. Recently, a novel FAK inhibitor (PF-573,228) has become available, its selectivity for FAK shown in vitro and in cell lines. We determined the effect of this inhibitor on platelet function and signaling pathways. Like murine platelets lacking FAK, we found that PF-573,228 was effective at blocking human platelet spreading on fibrinogen-coated surfaces but did not affect the initial adhesion. We also found a reduced spreading on CRP-coated surfaces. Further analysis of the morphology of platelets adhered to these surfaces showed the defect in spreading occurred at the transition from filopodia to lamellipodia. Similar to that seen with murine neutrophils lacking FAK, we also observed an unexpected defect in intracellular calcium release in human platelets pre-treated with PF-573,228 which correlated with impaired dense granule secretion and aggregation. The aggregation defect could be partially rescued by addition of ADP, normally secreted from dense granules, suggesting that PF-573,228 has effects on FAK downstream of alpha(IIb)beta(3) and elsewhere. Our data show that PF-573,228 is a useful tool for analysis of FAK function in cells and reveal that in human platelets FAK may regulate a rise in cell calcium and platelet spreading.
Assuntos
Plaquetas/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Sulfonas/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/enzimologia , Plaquetas/fisiologia , Cálcio/metabolismo , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinase Syk , Quinases Ativadas por p21/antagonistas & inibidoresRESUMO
PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.
Assuntos
Plaquetas/metabolismo , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Tirosina/metabolismo , Plaquetas/efeitos dos fármacos , Western Blotting , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Fosforilação , Frações Subcelulares , Acetato de Tetradecanoilforbol/farmacologia , Trombina/farmacologia , Quinases da Família src/metabolismoRESUMO
Evaluating new, promising organic molecules to make next-generation organic optoelectronic devices necessitates the evaluation of charge carrier transport performance through the semi-conducting medium. In this work, we utilize quantum chemical calculations (QCC) and kinetic Monte Carlo (KMC) simulations to predict the zero-field hole mobilities of â¼100 morphologies of the benchmark polymer poly(3-hexylthiophene), with varying simulation volume, structural order, and chain-length polydispersity. Morphologies with monodisperse chains were generated previously using an optimized molecular dynamics force-field and represent a spectrum of nanostructured order. We discover that a combined consideration of backbone clustering and system-wide disorder arising from side-chain conformations are correlated with hole mobility. Furthermore, we show that strongly interconnected thiophene backbones are required for efficient charge transport. This definitively shows the role "tie-chains" play in enabling mobile charges in P3HT. By marrying QCC and KMC over multiple length- and time-scales, we demonstrate that it is now possible to routinely probe the relationship between molecular nanostructure and device performance.
RESUMO
We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly of P3HT at â¼350 combinations of temperature and solvent quality. Our structural calculations predict that the highest degrees of order are obtained with good solvents just below the melting temperature. We find our model produces the most accurate structural predictions to date, as measured by agreement with grazing incident X-ray scattering experiments.
RESUMO
Background: Duodenal atresia (DA) is a congenital obstruction of the duodenum, which affects 1 in 7000 pregnancies and requires major surgery in the 1st days of life. Three morphological DA types are described. In humans, the association between DA and Down syndrome suggests an underlying, albeit elusive, genetic etiology. In mice, interruption of fibroblast growth factor 10 (Fgf10) gene signaling results in DA in 30-50% of embryos, supporting a genetic etiology. This study aims to validate the spectrum of DA in two novel strains of Fgf10 knock-out mice, in preparation for future and translational research. Methods: Two novel CRISPR Fgf10 knock-out mouse strains were derived and embryos generated by heterozygous plug-mating. E15.5-E19.5 embryos were genotyped with respect to Fgf10 and micro-dissected to determine the presence and type of DA. Results: One twenty seven embryos (32 wild-type, 34 heterozygous, 61 null) were analyzed. No wild-type or heterozygous embryos had DA. However, 74% of Fgf10 null embryos had DA (49% type 1, 18% type 2, and 33% type 3). Conclusion: Our CRISPR-derived strains showed higher penetrance of DA due to single-gene deletion of Fgf10 in mice than previously reported. Further, the DA type distribution in these mice more closely reiterated that observed in humans. Future experiments will document RNA and protein expression of FGF10 and its key downstream signaling targets in normal and atretic duodenum. This includes exploitation of modern, high-fidelity developmental tools, e.g., Fgf10 flox/+-tomatoflox/flox mice.