Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(13): 7001-7003, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32165541

RESUMO

A novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused a large respiratory outbreak in Wuhan, China in December 2019, is currently spreading across many countries globally. Here, we show that a TMPRSS2-expressing VeroE6 cell line is highly susceptible to SARS-CoV-2 infection, making it useful for isolating and propagating SARS-CoV-2. Our results reveal that, in common with SARS- and Middle East respiratory syndrome-CoV, SARS-CoV-2 infection is enhanced by TMPRSS2.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Serina Endopeptidases/metabolismo , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Surtos de Doenças , Humanos , Pandemias , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero , Cultura de Vírus
2.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055254

RESUMO

Here, we screened steroid compounds to obtain a drug expected to block host inflammatory responses and Middle East respiratory syndrome coronavirus (MERS-CoV) replication. Ciclesonide, an inhaled corticosteroid, suppressed the replication of MERS-CoV and other coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), in cultured cells. The 90% effective concentration (EC90) of ciclesonide for SARS-CoV-2 in differentiated human bronchial tracheal epithelial cells was 0.55 µM. Eight consecutive passages of 43 SARS-CoV-2 isolates in the presence of ciclesonide generated 15 resistant mutants harboring single amino acid substitutions in nonstructural protein 3 (nsp3) or nsp4. Of note, ciclesonide suppressed the replication of all these mutants by 90% or more, suggesting that these mutants cannot completely overcome ciclesonide blockade. Under a microscope, the viral RNA replication-transcription complex in cells, which is thought to be detectable using antibodies specific for nsp3 and double-stranded RNA, was observed to fall in the presence of ciclesonide in a concentration-dependent manner. These observations indicate that the suppressive effect of ciclesonide on viral replication is specific to coronaviruses, highlighting it as a candidate drug for the treatment of COVID-19 patients.IMPORTANCE The outbreak of SARS-CoV-2, the cause of COVID-19, is ongoing. New and effective antiviral agents that combat the disease are needed urgently. Here, we found that an inhaled corticosteroid, ciclesonide, suppresses the replication of coronaviruses, including betacoronaviruses (murine hepatitis virus type 2 [MHV-2], MERS-CoV, SARS-CoV, and SARS-CoV-2) and an alphacoronavirus (human coronavirus 229E [HCoV-229E]), in cultured cells. Ciclesonide is safe; indeed, it can be administered to infants at high concentrations. Thus, ciclesonide is expected to be a broad-spectrum antiviral drug that is effective against many members of the coronavirus family. It could be prescribed for the treatment of MERS and COVID-19.


Assuntos
COVID-19/metabolismo , Pregnenodionas/farmacologia , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Células Vero , Tratamento Farmacológico da COVID-19
3.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315988

RESUMO

A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral and cellular membranes to facilitate virus infection. Pre- and postfusion structures of viral fusion proteins have been characterized, but conformational changes between them remain poorly understood. Here, we examined the intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding. Western blot analysis of protease digestion products revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180 kDa). These two subunits were considered to be by-products derived from conformational changes and were useful for probing the intermediate conformation of the spike protein. Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and unpacked conformations, respectively, and two-dimensional electrophoresis revealed a trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer model for the intermediate structure of the spike protein. Receptor binding induces the membrane-binding potential of the trimer, in which at least one HR motif forms a packed-hairpin structure, while membrane fusion subunits are covered by the receptor-binding subunit, thereby preventing the spike protein from forming the typical homotrimeric prehairpin structure predicted by the current model of class I viral fusion protein. Subsequent proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of three HRs at the central axis to generate a six-helix bundle. Our model proposes a key mechanism for membrane fusion of enveloped viruses.IMPORTANCE Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits.


Assuntos
Vírus da Hepatite Murina/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Animais , Microscopia Crioeletrônica , Camundongos , Peso Molecular , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise
4.
Microbiol Immunol ; 64(9): 635-639, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579258

RESUMO

In this study, the anti-severe acute respiratory syndrome coronavirus-2 (anti-SARS-CoV-2) activity of mycophenolic acid (MPA) and IMD-0354 was analyzed. These compounds were chosen based on their antiviral activities against other coronaviruses. Because they also inhibit dengue virus (DENV) infection, other anti-DENV compounds/drugs were also assessed. On SARS-CoV-2-infected VeroE6/TMPRSS2 monolayers, both MPA and IMD-0354, but not other anti-DENV compounds/drugs, showed significant anti-SARS-CoV-2 activity. Although MPA reduced the viral RNA level by only approximately 100-fold, its half maximal effective concentration was as low as 0.87 µ m, which is easily achievable at therapeutic doses of mycophenolate mofetil. MPA targets the coronaviral papain-like protease and an in-depth study on its mechanism of action would be useful in the development of novel anti-SARS-CoV-2 drugs.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Ácido Micofenólico/farmacologia , Pneumonia Viral/tratamento farmacológico , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Vírus da Dengue/efeitos dos fármacos , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral/efeitos dos fármacos
5.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021905

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host cellular proteases to enter cells. A previous report shows that furin, which is distributed mainly in the Golgi apparatus and cycled to the cell surface and endosomes, proteolytically activates the MERS-CoV spike (S) protein following receptor binding to mediate fusion between the viral and cellular membranes. In this study, we reexamined furin usage by MERS-CoV using a real-time PCR-based virus cell entry assay after inhibition of cellular proteases. We found that the furin inhibitor dec-RVKR-CMK blocked entry of MERS-CoV harboring an S protein lacking furin cleavage sites; it even blocked entry into furin-deficient LoVo cells. In addition, dec-RVKR-CMK inhibited not only the enzymatic activity of furin but also those of cathepsin L, cathepsin B, trypsin, papain, and TMPRSS2. Furthermore, a virus cell entry assay and a cell-cell fusion assay provided no evidence that the S protein was activated by exogenous furin. Therefore, we conclude that furin does not play a role in entry of MERS-CoV into cells and that the inhibitory effect of dec-RVKR-CMK is specific for TMPRSS2 and cathepsin L rather than furin.IMPORTANCE Previous studies using the furin inhibitor dec-RVKR-CMK suggest that MERS-CoV utilizes a cellular protease, furin, to activate viral glycoproteins during cell entry. However, we found that dec-RVKR-CMK inhibits not only furin but also other proteases. Furthermore, we found no evidence that MERS-CoV uses furin. These findings suggest that previous studies in the virology field based on dec-RVKR-CMK should be reexamined carefully. Here we describe appropriate experiments that can be used to assess the effect of protease inhibitors on virus cell entry.


Assuntos
Furina/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteólise , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/genética , Catepsina B/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Chlorocebus aethiops , Furina/antagonistas & inibidores , Furina/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Papaína/antagonistas & inibidores , Papaína/genética , Papaína/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
6.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733646

RESUMO

Human coronavirus 229E (HCoV-229E), a causative agent of the common cold, enters host cells via two distinct pathways: one is mediated by cell surface proteases, particularly transmembrane protease serine 2 (TMPRSS2), and the other by endosomal cathepsin L. Thus, specific inhibitors of these proteases block virus infection. However, it is unclear which of these pathways is actually utilized by HCoV-229E in the human respiratory tract. Here, we examined the mechanism of cell entry used by a pseudotyped virus bearing the HCoV-229E spike (S) protein in the presence or absence of protease inhibitors. We found that, compared with a laboratory strain isolated in 1966 and passaged for a half century, clinical isolates of HCoV-229E were less likely to utilize cathepsin L; rather, they showed a preference for TMPRSS2. Two amino acid substitutions (R642M and N714K) in the S protein of HCoV-229E clinical isolates altered their sensitivity to a cathepsin L inhibitor, suggesting that these amino acids were responsible for cathepsin L use. After 20 passages in HeLa cells, the ability of the isolate to use cathepsin increased so that it was equal to that of the laboratory strain; this increase was caused by an amino acid substitution (I577S) in the S protein. The passaged virus showed a reduced ability to replicate in differentiated airway epithelial cells cultured at an air-liquid interface. These results suggest that the endosomal pathway is disadvantageous for HCoV-229E infection of human airway epithelial cells; therefore, clinical isolates are less able to use cathepsin. IMPORTANCE: Many enveloped viruses enter cells through endocytosis. Viral spike proteins drive the fusion of viral and endosomal membranes to facilitate insertion of the viral genome into the cytoplasm. Human coronavirus 229E (HCoV-229E) utilizes endosomal cathepsin L to activate the spike protein after receptor binding. Here, we found that clinical isolates of HCoV-229E preferentially utilize the cell surface protease TMPRSS2 rather than endosomal cathepsin L. The endosome is a main site of Toll-like receptor recognition, which then triggers an innate immune response; therefore, HCoV-229E presumably evolved to bypass the endosome by entering the cell via TMPRSS2. Thus, the virus uses a simple mechanism to evade the host innate immune system. Therefore, therapeutic agents for coronavirus-mediated diseases, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), should target cell surface TMPRSS2 rather than endosomal cathepsin.


Assuntos
Catepsina L/genética , Membrana Celular/virologia , Coronavirus Humano 229E/genética , Evasão da Resposta Imune , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Evolução Biológica , Catepsina L/antagonistas & inibidores , Catepsina L/imunologia , Membrana Celular/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Coronavirus Humano 229E/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Endocitose , Endossomos/efeitos dos fármacos , Endossomos/imunologia , Endossomos/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Células HeLa , Humanos , Mutação , Inibidores de Proteases/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Alinhamento de Sequência , Serina Endopeptidases/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
J Gen Virol ; 97(10): 2528-2539, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27449937

RESUMO

Porcine epidemic diarrhea virus (PEDV), a causative agent of pig diarrhoea, has recently caused significant economic damage worldwide. Porcine aminopeptidase N (pAPN) has been reported to be the receptor for PEDV, although robust evidence is lacking. In the present study, we explored whether pAPN functions as a receptor for PEDV. Human HeLa cells expressing pAPN and pAPN-positive porcine CPK cells failed to support PEDV infection, but were susceptible to infection by transmissible gastroenteritis virus (TGEV), which utilizes pAPN as a functional receptor. In contrast to TGEV, PEDV did not bind soluble porcine aminopeptidases (pAPs) and infection was not inhibited by the soluble form of pAPs. However, overexpression of pAPN in porcine CPK cells (CPK-pAPN cells) slightly increased the production of PEDV, and the increased replication in CPK-pAPN cells was inhibited by bestatin, an inhibitor of the protease activity of aminopeptidase N. These results suggest that pAPN is not a functional receptor for PEDV, but promotes the infection of PEDV through its protease activity.


Assuntos
Antígenos CD13/metabolismo , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Receptores Virais/metabolismo , Doenças dos Suínos/enzimologia , Animais , Antígenos CD13/genética , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/genética , Receptores Virais/genética , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia
8.
J Virol ; 87(23): 12552-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027332

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host proteases for virus entry into lung cells. In the current study, Vero cells constitutively expressing type II transmembrane serine protease (Vero-TMPRSS2 cells) showed larger syncytia at 18 h after infection with MERS-CoV than after infection with other coronaviruses. Furthermore, the susceptibility of Vero-TMPRSS2 cells to MERS-CoV was 100-fold higher than that of non-TMPRSS2-expressing parental Vero cells. The serine protease inhibitor camostat, which inhibits TMPRSS2 activity, completely blocked syncytium formation but only partially blocked virus entry into Vero-TMPRSS2 cells. Importantly, the coronavirus is thought to enter cells via two distinct pathways, one mediated by TMPRSS2 at the cell surface and the other mediated by cathepsin L in the endosome. Simultaneous treatment with inhibitors of cathepsin L and TMPRSS2 completely blocked virus entry into Vero-TMPRSS2 cells, indicating that MERS-CoV employs both the cell surface and the endosomal pathway to infect Vero-TMPRSS2 cells. In contrast, a single camostat treatment suppressed MERS-CoV entry into human bronchial submucosal gland-derived Calu-3 cells by 10-fold and virus growth by 270-fold, although treatment with both camostat and (23,25)-trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester, a cathepsin inhibitor, or treatment with leupeptin, an inhibitor of cysteine, serine, and threonine peptidases, was no more efficacious than treatment with camostat alone. Further, these inhibitors were not efficacious against MERS-CoV infection of MRC-5 and WI-38 cells, which were derived from lung, but these characters differed from those of mature pneumocytes. These results suggest that a single treatment with camostat is sufficient to block MERS-CoV entry into a well-differentiated lung-derived cell line.


Assuntos
Membrana Celular/enzimologia , Infecções por Coronavirus/enzimologia , Coronavirus/fisiologia , Serina Endopeptidases/metabolismo , Antivirais/administração & dosagem , Linhagem Celular , Membrana Celular/virologia , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Ésteres , Gabexato/administração & dosagem , Gabexato/análogos & derivados , Células Gigantes/efeitos dos fármacos , Células Gigantes/virologia , Guanidinas , Humanos , Inibidores de Serina Proteinase/administração & dosagem , Internalização do Vírus/efeitos dos fármacos
9.
J Virol ; 87(21): 11930-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966399

RESUMO

Here, we show that human parainfluenza viruses and Sendai virus (SeV), like other respiratory viruses, use TMPRSS2 for their activation. The membrane fusion proteins of respiratory viruses often possess serine and glutamine residues at the P2 and P3 positions, respectively, but these residues were not critical for cleavage by TMPRSS2. However, mutations of these residues affected SeV growth in specific epithelial cell lines, suggesting the importance of these residues for SeV replication in epithelia.


Assuntos
Interações Hospedeiro-Patógeno , Paramyxovirinae/fisiologia , Serina Endopeptidases/metabolismo , Replicação Viral , Animais , Linhagem Celular , Células Epiteliais/virologia , Humanos , Carga Viral , Ensaio de Placa Viral
10.
J Med Virol ; 86(12): 2146-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24760654

RESUMO

Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronaviridae/complicações , Infecções por Coronaviridae/virologia , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/imunologia , Síndrome de Linfonodos Mucocutâneos/etiologia , Síndrome de Linfonodos Mucocutâneos/virologia , Criança , Pré-Escolar , Feminino , Imunofluorescência , Humanos , Lactente , Masculino , Testes de Neutralização
11.
Microbiol Spectr ; 12(1): e0192023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38051050

RESUMO

IMPORTANCE: Since the pandemic of coronavirus diseases 2019, the use of real-time PCR assay has become widespread among people who were not familiar with it in virus detection. As a result, whether a high real-time PCR value in one time test indicates virus transmissibly became a complicated social problem, regardless of the difference in assays and/or amplification conditions, the time and number of diagnostic test during the time course of infection. In addition, the multiple positives in the test of respiratory viruses further add to the confusion in the interpretation of the infection. To address this issue, we performed virus isolation using pediatric SARI (severe acute respiratory infections) specimens on air-liquid interface culture of human bronchial/tracheal epithelial cell culture. The result of this study can be a strong evidence that the specimens showing positivity for multiple agents in real-time PCR tests possibly contain infectious viruses.


Assuntos
Pneumonia , Infecções Respiratórias , Viroses , Vírus , Humanos , Criança , Infecções Respiratórias/diagnóstico , Vírus/genética , Viroses/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real
12.
Jpn J Infect Dis ; 77(3): 137-143, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38171847

RESUMO

Human metapneumovirus (hMPV) is genetically classified into two major subgroups, A and B, based on attachment glycoprotein (G protein) gene sequences. The A2 subgroup is further separated into three subdivisions, A2a, A2b (A2b1), and A2c (A2b2). Subgroup A2c viruses carrying 180- or 111-nucleotide duplications in the G gene (A2c 180nt-dup or A2c 111nt-dup ) have been reported in Japan and Spain. The coronavirus disease 2019 (COVID-19) pandemic disrupted the epidemiological kinetics of other respiratory viruses, including hMPV. In this study, we analyzed the sequences of hMPV isolates in Tokyo and Fukushima obtained from 2017 to 2022, i.e., before and after the COVID-19 pandemic. Subgroup A hMPV strains were detected from 2017 to 2019, and most cases were A2c 111nt-dup, suggesting ongoing transmission of this clade, consistent with global transmission dynamics. Subgroup B viruses, but not subgroup A viruses, were detected in 2022 after the COVID-19 peak. Phylogenetic analysis showed that the subgroup B viruses were closely related to strains detected in Yokohama from 2013 to 2016, and strains detected in Fukushima in 2019, suggesting the reappearance of local endemic viruses in East Japan.


Assuntos
COVID-19 , Metapneumovirus , Epidemiologia Molecular , Infecções por Paramyxoviridae , Filogenia , Metapneumovirus/genética , Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , Humanos , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/transmissão , Japão/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Pré-Escolar , Criança , Lactente
13.
J Virol ; 86(12): 6537-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496216

RESUMO

The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.


Assuntos
Brônquios/citologia , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/virologia , Inibidores de Serina Proteinase/farmacologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Internalização do Vírus/efeitos dos fármacos , Brônquios/virologia , Células Epiteliais/efeitos dos fármacos , Humanos , Síndrome Respiratória Aguda Grave/tratamento farmacológico
14.
Jpn J Infect Dis ; 76(3): 204-206, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-36575025

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2021 and gradually overtook the Delta variant, which was the predominant variant at that time. The Omicron variant has been consecutively replaced by related sublineages. The real-time RT-PCR assays developed by the National Institute of Infectious Diseases (NIID), Japan (i.e., the NIID-N2 and NIID-S2 assays) are the reference assays that have been used in Japan since the outbreak of SARS-CoV-2. To evaluate the applicability of the NIID assays for the Omicron variants, trends in the prevalence of nucleotide mismatches in the primer/probe sequences were traced using sequences registered in the Global Initiative on Sharing Avian Influenza Data database. Approximately 99% of the deposited Omicron variant sequences did not have any mismatches in the NIID assay primer/probes from January to August 2022. This indicates that the NIID assays have been able to detect the changing SARS-CoV-2 Omicron variants.


Assuntos
COVID-19 , Doenças Transmissíveis , Animais , SARS-CoV-2/genética , Japão/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19
15.
Microbiol Spectr ; : e0459022, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744940

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes MERS, which is endemic in the Middle East. The absence of human cases in Africa despite the presence of MERS-CoV suggests virological differences between MERS-CoVs in Africa and the Middle East. In fact, in the laboratory, recombinant MERS-CoV carrying the spike (S) protein of Ethiopian isolates exhibits attenuated properties, being more easily neutralized and replicating slower than viruses carrying the S protein of Middle Eastern isolate, EMC. In this study, to identify the amino acids that define the different virological features between Ethiopian and Middle Eastern MERS-CoVs, neutralization titers and viral replication were evaluated using recombinant MERS-CoVs carrying amino acid substitution(s) in the S protein. A single amino acid difference introduced into the receptor binding domain was sufficient to reverse the difference in the neutralizing properties of the S protein between Ethiopian and Middle Eastern MERS-CoVs. Furthermore, amino acid mutations in the S1 and S2 regions of S protein were collectively involved in slow viral replication. Since even a single amino acid difference in S protein can reverse the viral properties of MERS-CoV, it should be noted that multiple mutations may induce a significant change. Careful monitoring of genetic alterations in MERS-CoVs in Africa is therefore required to detect the emergence of virulent strains generated by a few genetic differences. IMPORTANCE There have been no reported cases of human Middle East respiratory syndrome (MERS) in Africa, despite the presence of MERS coronavirus (MERS-CoV). Previous studies have shown that recombinant MERS-CoV carrying the S protein of an Ethiopian isolate replicated slower and was more easily neutralized relative to MERS-CoV carrying the S protein of a Middle Eastern isolate. In this study, we investigated the amino acid(s) in S protein associated with the different viral characteristics between Ethiopian and Middle Eastern MERS-CoVs. The results revealed that a single amino acid difference in the receptor binding domain was sufficient to reverse the neutralization profile. This implies that slight genetic changes can alter the predominant population of MERS-CoV, similar to the transition of variants of severe acute respiratory syndrome coronavirus-2. Careful genetic monitoring of isolates is important to detect the spread of possible virulent MERS-CoVs generated by mutation(s).

16.
J Virol Methods ; 322: 114812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741464

RESUMO

Human metapneumovirus (hMPV) is a common cause of respiratory infections in children. Many genetic diagnostic assays have been developed, but most detect hMPV regardless of the subgroup. In this study, we developed a real-time RT-PCR assay that can detect and identify the two major subgroups of hMPV (A and B) in one tube. Primers and probes were designed based on the sequences of recent clinical isolates in Japan. The assay showed comparable analytical sensitivity to a previously reported real-time RT-PCR assay and specific reactions to hMPV subgroups. The assay also showed no cross-reactivity to clinical isolates of 19 species of other respiratory viruses. In a validation assay using post-diagnosed clinical specimens, 98% (167/170) positivity was confirmed for the duplex assay, and the three specimens not detected were of low copy number. The duplex assay also successfully distinguished the two major subgroups for all 12 clinical specimens, for which the subgroup had already been determined by genomic sequencing analysis. The duplex assay described here will contribute to the rapid and accurate identification and surveillance of hMPV infections.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , Lactente , Metapneumovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Infecções por Paramyxoviridae/diagnóstico
17.
Microbiol Spectr ; 11(4): e0260622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409937

RESUMO

Human respiratory syncytial viruses (HRSVs) are divided into subgroups A and B, which are further divided based on the nucleotide sequence of the second hypervariable region (HVR) of the attachment glycoprotein (G) gene. Understanding the molecular diversity of HRSV before and during the coronavirus disease 2019 (COVID-19) pandemic can provide insights into the effects of the pandemic on HRSV dissemination and guide vaccine development. Here, we analyzed HRSVs isolated in Fukushima Prefecture from September 2017 to December 2021. Specimens from pediatric patients were collected at two medical institutions in neighboring cities. A phylogenetic tree based on the second HVR nucleotide sequences was constructed using the Bayesian Markov chain Monte Carlo method. HRSV-A (ON1 genotype) and HRSV-B (BA9 genotype) were detected in 183 and 108 specimens, respectively. There were differences in the number of HRSV strains within clusters prevalent at the same time between the two hospitals. The genetic characteristics of HRSVs in 2021 after the COVID-19 outbreak were similar to those in 2019. HRSVs within a cluster may circulate within a region for several years, causing an epidemic cycle. Our findings add to the existing knowledge of the molecular epidemiology of HRSV in Japan. IMPORTANCE Understanding the molecular diversity of human respiratory syncytial viruses during pandemics caused by different viruses can provide insights that can guide public health decisions and vaccine development.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Humanos , Lactente , Teorema de Bayes , Cidades/epidemiologia , COVID-19/epidemiologia , População do Leste Asiático , Variação Genética , Genótipo , Pandemias , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Japão
18.
J Gen Virol ; 93(Pt 9): 1908-1917, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22673931

RESUMO

Human coronavirus (HCoV) is a causative agent of the common cold. Although HCoV is highly prevalent in the world, studies of the genomic and antigenic details of circulating HCoV strains have been limited. In this study, we compared four Japanese isolates with the standard HCoV-229E strain obtained from ATCC (ATCC-VR740) by focusing on the spike (S) protein, a major determinant of neutralizing antigen and pathogenicity. The isolates were found to have nucleotide deletions and a number of sequence differences in the S1 region of the S protein. We compared two of the Japanese isolates with the ATCC-VR740 strain by using virus-neutralizing assays consisting of infectious HCoV-229E particles and vesicular stomatitis virus (VSV)-pseudotyped virus carrying the HCoV-229E S protein. The two clinical isolates (Sendai-H/1121/04 and Niigata/01/08) did not react with antiserum to the ATCC-VR740 strain via the neutralizing test. We then constructed a pseudotype VSV-harboured chimeric S protein with the ATCC S1 and Sendai S2 regions or that with Sendai S1 and ATCC S2 regions and compared them by a neutralization test. The results revealed that the difference in the neutralizing antigenicity depends on the S1 region. This different antigenic phenotype was also confirmed by a neutralizing test with clinically isolated human sera. These results suggest that the HCoV-229E viruses prevalent in Japan are quite different from the laboratory strain ATCC-VR740 in terms of the S sequence and neutralization antigenicity, which is attributed to the difference in the S1 region.


Assuntos
Coronavirus Humano 229E/classificação , Coronavirus Humano 229E/genética , Infecções por Coronavirus/virologia , Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética , Adulto , Motivos de Aminoácidos , Anticorpos Antivirais/imunologia , Linhagem Celular , Coronavirus Humano 229E/imunologia , Coronavirus Humano 229E/isolamento & purificação , Infecções por Coronavirus/imunologia , Feminino , Humanos , Japão , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Testes de Neutralização , Filogenia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Adulto Jovem
19.
J Med Virol ; 84(2): 365-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170560

RESUMO

Previously, it was reported that productive viral infection, viral protein synthesis, and viral RNA replication of respiratory syncytial virus (RSV) operated efficiently in two human epithelial cell lines (HEp-2 and A549), but not in a human mast-cell line, HMC-1. Based on these observations, it was hypothesized that HMC-1 cells lack the machinery required for RSV replication. To identify the host factors required for RSV replication, cDNA subtraction using A549, HEp-2, and HMC-1 cells was performed, and cytokeratin 18 (C18) was identified as a candidate host factor. Because C18 is generally expressed in simple epithelia with cytokeratin 8 (C8), HMC-1 cells that constitutively express C18 and C8 (HMC-1-C8/18) were established to evaluate the role of C8/18 in RSV replication. In HMC-1-C8/18 cells, RSV RNA replication was increased, and the amount of infective virus produced was also increased in the cellular fraction after RSV spinoculation, whereas RSV production was decreased in A549 cells in which C18 expression was knocked down. These data suggest that the replication of RSV increases in the presence of C8/18.


Assuntos
Queratina-18/metabolismo , Queratina-8/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral , Linhagem Celular , Humanos , Queratina-18/genética , Queratina-8/genética , RNA Viral/biossíntese , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo
20.
Pathogens ; 11(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35335626

RESUMO

In the ongoing coronavirus diseases 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), real-time RT-PCR based diagnostic assays have been used for the detection of infection, but the positive signal of real-time RT-PCR does not necessarily indicate the infectivity of the patient. Due to the unique replication system of the coronavirus, primer/probe sets targeted nucleocapsid (N) and spike (S) protein detect the abundantly synthesized subgenomic RNAs as well as the virus genome, possibly making the assay unsuitable for estimation of the infectivity of the specimen, although it has an advantage for the diagnostic tests. In this study, the primer/probe set targeting the open reading frame 1a (ORF1a) gene was developed to specifically detect viral genomic RNA. Then the relation between the ORF1a signal and infectivity of the clinical specimens was validated by virus isolation using VeroE6 cells, which constitutively express transmembrane protease, serine 2, (VeroE6/TMPRSS2). The analytical sensitivity of developed ORF1a set was similar to that of previously developed N and S sets. Nevertheless, in the assay of the clinical specimen, detection rate of the ORF1a gene was lower than that of the N and S genes. These data indicated that clinical specimens contain a significant amount of subgenomic RNAs. However, as expected, the isolation-succeeded specimen always showed an RT-PCR-positive signal for the ORF1a gene, suggesting ORF1a detection in combination with N and S sets could be a more rational indicator for the possible infectivity of the clinical specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA