Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(4): 468-477, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635564

RESUMO

Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.


Assuntos
Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial , Camundongos , Animais , Proteínas de Transporte da Membrana Mitocondrial/análise , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Mitocôndrias , Hidrólise , Guanosina Trifosfato/análise , Guanosina Trifosfato/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/farmacologia
2.
Small ; 19(42): e2302621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340585

RESUMO

The clinical patency of small-diameter vascular grafts (SDVGs) (ID < 6 mm) is limited, with the formation of mural thrombi being a major threat of this limitation. Herein, a bilayered hydrogel tube based on the essential structure of native blood vessels is developed by optimizing the relation between vascular functions and the molecular structure of hydrogels. The inner layer of the SDVGs comprises a zwitterionic fluorinated hydrogel, avoiding the formation of thromboinflammation-induced mural thrombi. Furthermore, the position and morphology of the SDVGs can be visualized via 19 F/1 H magnetic resonance imaging. The outer poly(N-acryloyl glycinamide) hydrogel layer of SDVGs provides matched mechanical properties with native blood vessels through the multiple and controllable intermolecular hydrogen-bond interactions, which can withstand the accelerated fatigue test under pulsatile radial pressure for 380 million cycles (equal to a service life of 10 years in vivo). Consequently, the SDVGs exhibit higher patency (100%) and more stable morphology following porcine carotid artery transplantation for 9 months and rabbit carotid artery transplantation for 3 months. Therefore, such a bioinspired, antithrombotic, and visualizable SDVG presents a promising design approach for long-term patency products and great potential of helping patients with cardiovascular diseases.


Assuntos
Hidrogéis , Trombose , Humanos , Animais , Suínos , Coelhos , Inflamação , Prótese Vascular , Imageamento por Ressonância Magnética
3.
Small ; 19(38): e2301019, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209021

RESUMO

Type 1 diabetes (T1D), which is a chronic autoimmune disease, results from the destruction of insulin-producing ß cells targeted by autoreactive T cells. The recent discovery that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) function as therapeutic tools for autoimmune conditions has attracted substantial attention. However, the in vivo distribution and therapeutic effects of MSC-EVs potentiated by pro-inflammatory cytokines in the context of T1D have yet to be established. Here, it is reported that hexyl 5-aminolevulinate hydrochloride (HAL)-loaded engineered cytokine-primed MSC-EVs (H@TI-EVs) with high expression of immune checkpoint molecule programmed death-legend 1 (PD-L1) exert excellent inflammatory targeting and immunosuppressive effects for T1D imaging and therapy. The accumulated H@TI-EVs in injured pancreas not only enabled the fluorescence imaging and tracking of TI-EVs through the intermediate product protoporphyrin (PpIX) generated by HAL, but also promoted the proliferative and anti-apoptotic effects of islet ß cells. Further analysis revealed that H@TI-EVs exhibited an impressive ability to reduce CD4+ T cell density and activation through the PD-L1/PD-1 axis, and induced M1-to-M2 macrophage transition to reshape the immune microenvironment, exhibiting high therapeutic efficiency in mice with T1D. This work identifies a novel strategy for the imaging and treatment of T1D with great potential for clinical application.


Assuntos
Diabetes Mellitus Tipo 1 , Vesículas Extracelulares , Animais , Camundongos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/terapia , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Linfócitos T/metabolismo , Ácido Hialurônico
4.
Opt Express ; 30(18): 32051-32060, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242274

RESUMO

We demonstrate a short-wave infrared computed tomography method. It uses a fiber-coupled 1.44µm super-luminescent diode as light source, a PbSe photodiode as infrared detector, and an electronically controlled rotation and translation stage for high-speed Radon scanning. It is a safe and low power nondestructive testing method that can be used for the detection of plastic polymers, biological tissue and other materials that visible light cannot penetrate. We analyze the theoretical resolution of the method and build a short-wave infrared computed tomography system, which realizes the tomography and 3D reconstruction of black plastic bottles and artificial blood vessels. The measured resolution reaches10µm.


Assuntos
Substitutos Sanguíneos , Radônio , Plásticos , Tomografia Computadorizada por Raios X
5.
Nano Lett ; 21(9): 3965-3973, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886338

RESUMO

Nanovaccines have emerged as promising agents for cancer immunotherapy. However, insufficient antitumor immunity caused by inefficient antigen/adjuvant loading and complicated preparation processes are the major obstacles that limit their clinical application. Herein, two adjuvants, monophosphatidyl A (MPLA) and CpG ODN, with antigens were designed into a nanovaccine to overcome the above obstacles. This nanovaccine was constructed with adjuvants (without additional materials) through facile self-assembly, which not only ensured a high loading efficacy and desirable safety but also facilitated clinical translation for convenient fabrication. More importantly, the selected adjuvants could achieve a notable immune response through synergistic activation of Toll-like receptor 4 (TLR4) and TLR9 signaling pathways, and the resulting nanovaccine remarkably inhibited the tumor growth and prolonged the survival of tumor-implanted mice. This nanovaccine system provides an effective strategy to construct vaccines for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas , Adjuvantes Imunológicos , Animais , Imunidade , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
6.
Nat Chem Biol ; 15(2): 151-160, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30598545

RESUMO

The spatiotemporal generation of nitric oxide (NO), a versatile endogenous messenger, is precisely controlled. Despite its therapeutic potential for a wide range of diseases, NO-based therapies are limited clinically due to a lack of effective strategies for precisely delivering NO to a specific site. In the present study, we developed a novel NO delivery system via modification of an enzyme-prodrug pair of galactosidase-galactosyl-NONOate using a 'bump-and-hole' strategy. Precise delivery to targeted tissues was clearly demonstrated by an in vivo near-infrared imaging assay. The therapeutic potential was evaluated in both rat hindlimb ischemia and mouse acute kidney injury models. Targeted delivery of NO clearly enhanced its therapeutic efficacy in tissue repair and function recovery and abolished side effects due to the systemic release of NO. The developed protocol holds broad applicability in the targeted delivery of important gaseous signaling molecules and offers a potent tool for the investigation of relevant molecular mechanisms.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Animais , Compostos Azo , Galactosidases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Óxido Nítrico/fisiologia , Pró-Fármacos , Ratos , Ratos Sprague-Dawley , beta-Galactosidase/metabolismo , beta-Galactosidase/fisiologia
7.
Mol Pharm ; 18(3): 928-939, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427470

RESUMO

Photodynamic therapy (PDT) is promising for clinical cancer therapy; however, the efficacy was limited as an individual treatment regimen. Here, an approach synergistically combining PDT and nitric oxide (NO) gas therapy along with destruction of the tumor extracellular matrix (ECM) was presented to eliminate cancer. Specifically, the NO donor l-arginine (l-Arg) and the photosensitizer indocyanine green (ICG) were co-encapsulated in poly(lactic-glycolic acid) (PLGA) nanoparticles and then loaded into the poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) hydrogel to develop an injectable, thermosensitive dual drug delivery system (PLGA@ICG@l-Arg/Gel). Significantly, reactive oxygen species (ROS) produced by PLGA@ICG@l-Arg/Gel under near-infrared (NIR) light irradiation could not only result in the apoptosis of cancer cells but also oxidize l-Arg to generate NO, which could suppress the proliferation of cancer cells. Moreover, ROS could further oxidize NO to generate peroxynitrite anions (ONOO-). ONOO- could activate matrix metalloproteinases (MMPs), which notably degraded collagen in ECM so as to damage the tumor microenvironment. PLGA@ICG@l-Arg/Gel significantly increased the antitumor efficacy against highly malignant 4T1 tumors in mice. Taken together, PLGA@ICG@l-Arg/Gel is a multifunctional platform that provides a novel strategy for cancer treatment with cascade amplification of the ROS oxidation effect, which holds great potential in clinical translation.


Assuntos
Arginina/química , Colágeno/metabolismo , Hidrogéis/administração & dosagem , Verde de Indocianina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Hidrogéis/química , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Poliésteres/química , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos
8.
Mol Pharm ; 18(4): 1806-1818, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734705

RESUMO

Type 1 diabetes (T1D) is an autoimmune subtype of diabetes, mainly caused by the immune attack of self-insulin-producing cells. Immune modulation that delays the onset of T1D is able to reduce diabetic complications and mortality. We have previously reported that mannosylated sodium alginate nanoparticles (MAN-ALG) exhibited excellent dendritic cell targeting and in vivo antigen delivery efficacy. To investigate the role of MAN-ALG in an autoimmune context, we loaded the MAN-ALG with Ins29-23, a T1D autoantigen [MAN-ALG(PEP)], for T1D immune tolerance induction in nonobese diabetic (NOD) mice. We observed the delayed onset of T1D occurrence and some degree of blood glucose reduction accompanied by a larger islet area, attributable to augmented T-regulatory cell proportion in mice treated with MAN-ALG(PEP). However, MAN-ALG was also found to elicit lysosomal escape and cross-presentation of Ins29-23 in bone marrow-derived dendritic cells, leading to the immune activation of Ins29-23-recognizing T cells and destruction of Ins29-23-expressing islet cells. This dual impact resulted in delayed but a nonpreventive effect of MAN-ALG(PEP) on the T1D onset in NOD mice. Considering the potent immune stimulatory property of MAN-ALG, cautions should be implemented when using alginate-based biomaterials in an autoimmune context. Moreover, it is also noted that regarding the in vivo outcome of immune therapies, biomaterial-based delivery systems and their detailed role on immune regulation need to be examined.


Assuntos
Autoantígenos/administração & dosagem , Diabetes Mellitus Tipo 1/prevenção & controle , Portadores de Fármacos/química , Insulina/imunologia , Peptídeos/administração & dosagem , Alginatos/química , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Insulina/genética , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/química , Peptídeos/genética , Peptídeos/imunologia
9.
J Nanobiotechnology ; 19(1): 451, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961540

RESUMO

BACKGROUND: Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). RESULTS: In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4ß1 and αLß2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. CONCLUSION: This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Vesículas Extracelulares/química , Compostos Macrocíclicos/química , Tensoativos/química , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Calixarenos/química , Calixarenos/metabolismo , Calixarenos/farmacologia , Calixarenos/uso terapêutico , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Inflamação , Integrinas/metabolismo , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tensoativos/metabolismo , Tensoativos/farmacologia , Tensoativos/uso terapêutico
10.
J Appl Toxicol ; 41(5): 668-682, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33263192

RESUMO

Fine particulate matter ≤2.5 µm (PM2.5 ) air pollution is regarded as one of the prominent risk factors that contributes to morbidity and mortality globally, among which cardiovascular disease (CVD) has been strongly associated with PM2.5 exposure and is a leading cause of death. Atherosclerosis (AS), the common pathological basis of many CVDs, is a progressive syndrome characterized by the accumulation of lipids and fibrous plaque in the arteries. Recent epidemiological and toxicological studies suggest that PM2.5 may also contribute to the development of AS, even at levels below the current air quality standards. In this paper, the complete pathological process of atherosclerotic plaque from occurrence to rupture leading to CVD was elaborated. Then, the growing epidemiological evidence linking PM2.5 to AS in humans was reviewed and summarized. Furthermore, the potential mechanisms of PM2.5 -mediated AS were discussed, including oxidative stress, inflammation, endothelial dysfunction, abnormal lipid metabolism, disturbance of the autonomic nervous system, and abnormal coagulation function. This paper aimed to provide a comprehensive view of the effect of PM2.5 on the occurrence and development of AS for better prevention and mitigation of adverse health impacts due to PM2.5 air pollution.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Aterosclerose/epidemiologia , Material Particulado/toxicidade , Doenças Cardiovasculares/epidemiologia , Sistema Cardiovascular/efeitos dos fármacos , Humanos , Estresse Oxidativo , Fatores de Risco
11.
J Am Soc Nephrol ; 31(10): 2292-2311, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32769144

RESUMO

BACKGROUND: Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype. METHODS: We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)-NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles in vitro for biocompatibility and antifibrotic function. To assess antifibrotic activity in vivo, we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD. RESULTS: Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which-following endocytosis driven by CD44+ cells-promoted cellular growth and inhibited fibrotic gene expression in vitro. Intravenous tail injection of these nanoparticles resulted in approximately 40%-45% of gene uptake in kidneys in vivo. The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of BMP7 reversed the progression of fibrosis and regenerated tubules, whereas delivery of HGF/NK1 halted CKD progression by eliminating collagen fiber deposition. CONCLUSIONS: Nanoparticle delivery of HGF/NK1 conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.


Assuntos
Antifibrinolíticos/administração & dosagem , Proteína Morfogenética Óssea 7/genética , Técnicas de Transferência de Genes , Fator de Crescimento de Hepatócito/genética , Nanopartículas Multifuncionais , Insuficiência Renal Crônica/terapia , Animais , Técnicas de Cultura de Células , Quitosana , Modelos Animais de Doenças , Ácido Hialurônico , Camundongos , Polímeros
12.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557232

RESUMO

Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4ß1 and α4ß7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C' loop binding cleft within integrins α4ß1 and α4ß7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C' loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4ß1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C' loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.


Assuntos
Desenho de Fármacos , Fibroblastos/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose/tratamento farmacológico , Integrinas/metabolismo , Miofibroblastos/efeitos dos fármacos , Peptídeos/farmacologia , Sítios de Ligação , Diferenciação Celular , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/química , Fibrose/metabolismo , Fibrose/patologia , Humanos , Integrinas/química , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
14.
Mol Pharm ; 17(9): 3513-3525, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787283

RESUMO

Poly[lactic-co-(glycolic acid)] (PLGA) is arguably one of the most versatile synthetic copolymers used for biomedical applications. In vivo delivery of multiple substances including cells, pharmaceutical compounds, and antigens has been achieved by using PLGA-based micro-/nanoparticles although, presently, the exact biological impact of PLGA particles on the immune system remains controversial. Type 1 diabetes (T1D) is one subtype of diabetes characterized by the attack of immune cells against self-insulin-producing pancreatic islet cells. Considering the autoimmune etiology of T1D and the recent use of PLGA particles for eliciting desired immune responses in various aspects of immunotherapy, for the present study, a combination of Ins29-23 peptide (a known autoantigen of T1D) and PLGA microparticles was selected for T1D prevention assessment in nonobese diabetic (NOD) mice, a well-known animal model with spontaneous development of T1D. Thus, inoculation of PLGA microparticles + Ins29-23 completely prevented T1D development, significantly better than untreated controls and mice treated by either PLGA microparticles or Ins29-23 per se. Subsequent mechanistic investigation further revealed a facilitative role of PLGA microparticles in immune tolerance induction. In summary, our data demonstrate an adjuvant potential of PLGA microparticles in tolerance induction and immune remodulation for effective prevention of autoimmune diseases such as T1D.


Assuntos
Adjuvantes Imunológicos/química , Diabetes Mellitus Tipo 1/tratamento farmacológico , Tolerância Imunológica/efeitos dos fármacos , Insulina/imunologia , Microplásticos/química , Fragmentos de Peptídeos/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/imunologia , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/imunologia , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/química
15.
Circ Res ; 123(4): 451-466, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980568

RESUMO

RATIONALE: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling-a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. OBJECTIVE: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. METHODS AND RESULTS: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. CONCLUSIONS: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.


Assuntos
Movimento Celular , Células Progenitoras Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores CXCR/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/citologia , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
16.
Biomacromolecules ; 21(3): 1243-1253, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32045224

RESUMO

Multifunctional tissue adhesives with excellent adhesion, antibleeding, anti-infection, and wound healing properties are desperately needed in clinical surgery. However, the successful development of multifunctional tissue adhesives that simultaneously possess all these properties remains a challenge. We have prepared a novel chitosan-based hydrogel adhesive by integration of hydrocaffeic acid-modified chitosan (CS-HA) with hydrophobically modified chitosan lactate (hmCS lactate) and characterized its gelation time, mechanical properties, and microstructure. Tissue adhesion properties were evaluated using both pigskin and intestine models. In situ antibleeding efficacy was demonstrated via the rat hemorrhaging liver and full-thickness wound closure models. Good antibacterial activity and anti-infection capability toward S. aureus and P. aeruginosa were confirmed using in vitro contact-killing assays and an infected pigskin model. The result of coculturing with 3T3 fibroblast cells indicated that the hydrogels have no significant cytotoxicity. Most importantly, the biocompatible and biodegradable CS-HA/hmCS lactate hydrogel was able to close the wound in a sutureless way and promote wound healing. Our results demonstrate that this hydrogel has great promise for sutureless closure of surgical incisions.


Assuntos
Quitosana , Adesivos Teciduais , Adesivos/farmacologia , Animais , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Ratos , Staphylococcus aureus , Adesivos Teciduais/farmacologia
17.
Soft Matter ; 16(8): 2141-2148, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32016231

RESUMO

Poly(l-lactic acid) (PLLA) scaffolds have been used in regenerative medicine, however, they commonly suffer from low flexibility, restricting their application in the repair and reconstruction of soft tissues. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) copolymers were examined to modulate the elasticity of PLLA with the random presence of CL units in PLLA. Thermodynamic analysis revealed that the introduction of PCL could significantly decrease the melting point and glass transition temperature of PLLA, benefiting the extrusion and printing of PLCL. Diverse scaffolds with designed architectures including porous cubes with or without large holes, cambered plates with holes and round tubes could be easily constructed by 3D printing. In the process of elastic deformation, the maximum elastic stress of the copolymer scaffold was obviously increased from 19.6 to 31.5 MPa when the relative content of PCL was increased to 70%, while the elongation at break was evidently increased from 388% to about 1974%. The Young's modulus of PLCL was also significantly decreased (P < 0.05) in comparison with that of PLLA. PLCL scaffolds have good platelet and endotheliocyte adhesion ability and no obvious hemolysis was observed. In vivo subcutaneous implantation of PLCL scaffolds demonstrated superior biocompatibility. Collectively, this work highlights that copolymerization of PCL segments into PLLA is an effective approach to tune the 3D printability and the stiffness and elasticity of PLLA scaffolds. PLCL scaffolds hold great promise for the regeneration of soft tissues including but not limited to cartilage, myocardium, muscle, tendon and nervous tissues.


Assuntos
Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Plaquetas/citologia , Adesão Celular , Proliferação de Células , Elasticidade , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Impressão Tridimensional , Coelhos , Engenharia Tecidual/instrumentação
18.
Ecotoxicol Environ Saf ; 192: 110308, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058168

RESUMO

PM2.5 particles are regarded as prominent risk factors that contribute to the development of atherosclerosis. However, the composition of PM2.5 is rather complicated. This study aimed to provide a model particle that simulates the behavior of actual PM2.5, for subsequent use in exploring mechanisms and major complications arising from PM2.5. To establish model particles of PM2.5, a series of monodisperse SiO2 microspheres with different average grain diameters were mixed according to the size distribution of actual PM2.5. The organic carbon (OC) was removed from PM2.5 and coated onto the SiO2 model particle, to formulate simulant PM2.5. Results showed that the size distribution of the model particle was highly approximate to that of the PM2.5 core. The polycyclic aromatic hydrocarbon (PAHs) composition profile of the simulated PM2.5 were approximate to PM2.5, and loading efficiency was approximately 80%-120%. Furthermore, compared to the control, SiO2-only model particle had negligible cytotoxicity on cell viability and oxidative stress of HUVECs, and marginal effect on the lipid metabolism and atherosclerotic plaque formation in ApoE-/- mice. In contrast, simulated PM2.5 exhibited similar cytotoxic and detrimental effects on lipid metabolism and atherosclerotic plaque formation with actual PM2.5. Traffic-related PM2.5 had negative effects on endothelial function and led to the formation of atherosclerosis via oxidative stress. The simulated PM2.5 simulated the outcomes of actual PM2.5 exposure. Here, we show that SiO2 particle model cores coated with OC could significantly assist in the evaluation of the effects of specific organic compositions bound on PM2.5, specifically in the context of environmental health and safety.


Assuntos
Poluentes Atmosféricos/toxicidade , Apolipoproteínas E/deficiência , Material Particulado/química , Placa Aterosclerótica/induzido quimicamente , Dióxido de Silício/química , Poluentes Atmosféricos/química , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Dióxido de Silício/toxicidade , Emissões de Veículos/toxicidade
19.
Zygote ; : 1-10, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31933449

RESUMO

Studies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α-/- male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α-/- mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.

20.
Nano Lett ; 19(7): 4237-4249, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30868883

RESUMO

Among approaches of current cancer immunotherapy, a dendritic cell (DC)-targeted vaccine based on nanotechnology could be a promising way to efficiently induce potent immune responses. To enhance DC targeting and vaccine efficiency, we included imiquimod (IMQ), a toll-like receptor 7/8 (TLR 7/8) agonist, and monophosphoryl lipid A (MPLA), a TLR4 agonist, to synthesize lipid-polymer hybrid nanoparticles using PCL-PEG-PCL and DOTAP (IMNPs) as well as DSPE-PEG-mannose (MAN-IMNPS). The spatiotemporal delivery of MPLA (within the outer lipid layer) to extracellular TLR4 and IMQ (in the hydrophobic core of NPs) to intracellular TLR7/8 can activate DCs synergistically to improve vaccine efficacy. Ovalbumin (OVA) as a model antigen was readily absorbed by positively charged DOTAP and showed a quick release in vitro. Our results demonstrated that this novel nanovaccine enhanced cellular uptake, cytokine production, and maturation of DCs. Compared with the quick metabolism of free OVA-agonists, the depot effect of OVA-IMNPs was observed, whereas MAN-OVA-IMNPs promoted trafficking to secondary lymphoid organs. After immunization with a subcutaneous injection, the nanovaccine, especially MAN-OVA-IMNPs, induced more antigen-specific CD8+ T cells, greater lymphocyte activation, stronger cross-presentation, and more generation of memory T cells, antibody, IFN-γ, and granzyme B. Prophylactic vaccination of MAN-OVA-IMNPs significantly delayed tumor development and prolonged the survival in mice. The therapeutic tumor challenge indicated that MAN-OVA-IMNPs prohibited tumor progression more efficiently than other formulations, and the combination with an immune checkpoint blockade further enhanced antitumor effects. Hence, the DC-targeted vaccine codelivery with IMQ and MPLA adjuvants by hybrid cationic nanoparticles in a spatiotemporal manner is a promising multifunctional antigen delivery system in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Imiquimode , Imunoterapia , Lipídeo A/análogos & derivados , Nanopartículas , Neoplasias Experimentais , Receptores Toll-Like/agonistas , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacocinética , Vacinas Anticâncer/farmacologia , Células Dendríticas/patologia , Imiquimode/imunologia , Imiquimode/farmacocinética , Imiquimode/farmacologia , Lipídeo A/imunologia , Lipídeo A/farmacocinética , Lipídeo A/farmacologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA