Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Horm Behav ; 136: 105043, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507054

RESUMO

Endocrine disrupting chemicals, such as bisphenol A (BPA) and ethinylestradiol (EE2), are detected in the marine environment from plastic waste and wastewater effluent. However, their impact on reproduction in sexually labile coral reef fish is unknown. The objective of this study was to determine impacts of environmentally relevant concentrations of BPA and EE2 on behavior, brain gene expression, gonadal histology, sex hormone profile, and plasma vitellogenin (Vtg) levels in the anemonefish, Amphiprion ocellaris. A. ocellaris display post-maturational sex change from male to female in nature. Sexually immature, male fish were paired together and fed twice daily with normal food (control), food containing BPA (100 µg/kg), or EE2 (0.02 µg/kg) (n = 9 pairs/group). Aggression toward an intruder male was measured at 1, 3, and 6 months. Blood was collected at 3 and 6 months to measure estradiol (E2), 11-ketotestosterone (11-KT), and Vtg. At the end of the study, fish were euthanized to assess gonad morphology and to measure expression of known sexually dimorphic genes in the brain. Relative to control, BPA decreased aggression, altered brain transcript levels, increased non-vitellogenic and vitellogenic eggs in the gonad, reduced 11-KT, and increased plasma Vtg. In two BPA-treated pairs, both individuals had vitellogenic eggs, which does not naturally occur. EE2 reduced 11-KT in subordinate individuals and altered expression of one transcript in the brain toward the female profile. Results suggest BPA, and to a lesser extent EE2, pollution in coral reef ecosystems could interfere with normal reproductive physiology and behavior of the iconic sexually labile anemonefish.


Assuntos
Recifes de Corais , Estradiol , Animais , Compostos Benzidrílicos , Encéfalo , Ecossistema , Estradiol/farmacologia , Feminino , Peixes , Hormônios Esteroides Gonadais , Gônadas , Masculino , Fenóis , Vitelogeninas/genética
2.
Ecotoxicol Environ Saf ; 213: 112013, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601173

RESUMO

Mosquito larvicides are an effective tool for reducing numbers of adult females that bite and potentially spread pathogenic organisms. Methionine, an essential amino acid in humans, has been previously demonstrated to be a highly effective larvicide against four (4) mosquito species in three (3) genera, Anopheles, Culex and Aedes. The aim of the present study was to determine the potential impact on non-target aquatic organisms of methionine applied as a mosquito larvicide. DL-methionine concentrations ranging from 0.06% to 1.00% were used; wherein the highest concentration of 1.00% would result in 100% mortality within 48 h in mosquitoes. Acute toxicity assays were conducted in accordance with the US Environmental Protection Agency (US EPA) guidelines for the water flea (Daphnia magna Straus; Cladocera: Daphniidae) and the fathead minnow (Pimephales promelas Rafinesque; Cypriniformes: Cyprinidae). Water fleas and fish were placed directly into the solutions in glass containers and tanks for 48-hours and 96-hours, respectively. When applied within the above-mentioned range of effective mosquito larvicide concentrations, DL-methionine meets US EPA criteria as a "practically non-toxic" pesticide for both species. These results suggest that methionine is a viable alternative to current mosquito larvicide options, which are typically classified as moderately to highly toxic and may be a valuable addition to a mosquito integrated pest management program.


Assuntos
Organismos Aquáticos , Metionina/toxicidade , Controle de Mosquitos , Aedes , Animais , Anopheles , Culex , Cyprinidae , Daphnia , Feminino , Humanos , Larva
3.
Gen Comp Endocrinol ; 296: 113543, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598883

RESUMO

Quantification of steroid hormones in fish is an important step for toxicology and endocrinology studies. Among the hormone analysis techniques, liquid chromatography tandem mass spectrometry (LC-MS/MS) has widely been used for measuring hormones in various biological samples. Despite all improvements in the technique, detection of several hormones in a low volume of serum or plasma is still challenging. We developed a robust method for simultaneous quantification of 14 steroid hormones including corticosterone, cortisol, 11-ketotestosterone, progesterone, testosterone, 17OH-progesterone, aldosterone, dihydrotestosterone, estrone, 17ß-estradiol, estriol, ethinylestradiol, levonorgestrel and equilin from volumes as low as 10 µL serum or plasma in a short run by LC-MS/MS. The lowest limit of detection in 10 µL serum was 0.012 ng/mL measured for cortisol, progesterone, testosterone, 17OH-progesterone and estrone. Use of high (25 times more) serum volume improved detection limit of hormones by 2-40 times. The method was compared with the radioimmunoassay technique in which testosterone and 17ß-estradiol were highly correlated with R2 of 0.95 and 0.96, respectively. We validated the method by measuring four selected hormones, in low and high plasma volumes of largemouth bass (Micropterus salmoides). In addition, we developed a method to quantify hormones in whole body fish homogenates of small fish and compared the values to plasma concentrations, using fathead minnow (Pimephales promelas). Calculated concentrations of the hormones in plasma were consistent with those in the homogenate and 11-ketotestosterone and 17ß-estradiol were significantly different in males and females. The ability to measure hormones from whole body homogenates was further evaluated in two model small fish species, zebrafish (Danio rerio) and juvenile silverside (Menidia beryllina). These results suggest that whole tissue homogenate is a reliable alternative for hormone quantification when sufficient plasma is not available.


Assuntos
Volume Plasmático , Esteroides/sangue , Espectrometria de Massas em Tandem/métodos , Peixe-Zebra/sangue , Animais , Calibragem , Cromatografia Líquida , Feminino , Limite de Detecção , Masculino , Análise de Regressão
4.
Gen Comp Endocrinol ; 286: 113300, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678557

RESUMO

Estrogenic contaminants in the environment are linked to the occurrence of reproductive abnormalities in many aquatic species, including largemouth bass (Micropterus salmoides; LMB). Previous work has shown that many different types of xenoestrogens regulate expression of the Steroidogenic Acute Regulatory protein (StAR), a cholesterol-transporting protein vital to steroid hormone biosynthesis; however, the regulatory mechanisms of StAR are incompletely characterized in fish. To learn more about endogenous expression patterns of StAR in the ovary, LMB were collected from the St. John's River (Florida, USA) over an entire breeding season to investigate StAR expression. Plasma 17ß-estradiol (E2) and StAR mRNA levels were positively correlated in females, and StAR mRNA levels displayed ~ 100-fold increase between primary oocyte growth stages and final maturation. To further study the regulation of StAR, female LMB in the laboratory were fed at ≃2% of their weight on a diet laden with 17α-ethinylestradiol (EE2, 70 or 200 ng EE2 per gram feed). Diets were designed to achieve a physiologically-relevant exposure to EE2, and StAR expression was assessed in vivo. We observed a dose-dependent suppression of StAR mRNA levels, however both diets led to high, pharmacological levels in the blood and do not represent normal physiological ranges of estrogens. In the 200 ng EE2/gm feed group, ovarian StAR mRNA levels were suppressed to approximately 5% of that of the LMB control group. These investigations suggest that LMB StAR increases in expression during oocyte maturation and that it is suppressed by E2 feedback when estrogen levels are high, through the HPG axis. A 2.9 kb segment of the LMB StAR promoter was examined for putative E2 response elements using in silico software, and a putative estrogen receptor binding element (ERE/-1745) was predicted in the promoter. The functionality of the ERE was examined using MA-10 mouse Leydig cells transfected with the LMB StAR promoter. Estrogen receptor (ER) interaction with ERE/-1745 was evaluated under basal and human chorionic gonadotropin (hCG)-treated conditions in the presence and absence of E2. Chromatin immunoprecipitation (ChIP) experiments revealed that ESR1 binding to the promoter was enriched under basal conditions and E2 exposure elicited an increase in enrichment (4-fold) above that observed under basal conditions. ESR2 was not strongly enriched at the ERE/-1745 site, suggesting that StAR may be preferentially regulated by LMB estrogen receptor 1 (esr1). Taken together, these different experiments provide evidence that LMB StAR is under the control of estrogens and that ESR1 binds directly to the LMB StAR promoter in an E2-responsive manner.


Assuntos
Ovário/metabolismo , Fosfoproteínas/metabolismo , Receptores de Estrogênio/metabolismo , Reprodução/fisiologia , Animais , Bass , Feminino , Transfecção
5.
Gen Comp Endocrinol ; 257: 50-66, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733229

RESUMO

Estradiol is a potent sex steroid hormone that controls reproduction and other cellular pathways in fish. It is known to regulate important proteins such as vitellogenin, the egg yolk precursor protein, and zona radiata proteins that form the eggshell for fish eggs. These proteins are made in the liver and transported out into the blood from where they are taken up into the ovary during oogenesis. Estradiol can exert its influence directly through soluble nuclear receptors (there are three in fish) or indirectly through membrane receptors and a phosphorylation cascade. Often there is coordination through both genomic and non-genomic pathways. We have used a toxicogenomics approach to determine the contribution of genomic and non-genomic regulation in the liver of fathead minnows exposed to 5ng ethinylestradiol per liter or to a mixture of 5ng ethinylestradiol and 100ng ZM189,154 (ZM) per liter. ZM has previously been shown to be a "perfect" antagonist for the fish nuclear estrogen receptors but has displayed agonistic activities for membrane receptors. We find that both nuclear and membrane receptors contribute to the biosynthesis of vitellogenin 1 and estrogen receptor one (Esr1), among others. In addition, lipid metabolism pathways appear to require both activities.


Assuntos
Cyprinidae/metabolismo , Estrogênios/metabolismo , Fígado/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Análise por Conglomerados , Estradiol/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/efeitos dos fármacos , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/genética , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Vitelogeninas/genética , Vitelogeninas/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Arch Environ Contam Toxicol ; 71(1): 60-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26833202

RESUMO

Freshwater sediment-dwelling Lumbriculus variegatus is known to serve as a vector for the transfer of contaminants from sediments to higher trophic level organisms, but limited data exist on the bioaccumulation of chemicals associated with sediments containing high total organic carbon (TOC). In the current study, sediments from the north shore area of Lake Apopka (Florida, USA), containing very high TOC [39 % (w/w)], were spiked with four chemicals-p,p'-dichlorordiphenyldichloroethylene (p,p'-DDE), dieldrin, fipronil, and triclosan-individually or in a mixture of the four and then used for bioaccumulation studies. Tissue concentrations of chemicals in L. variegatus were measured at 2, 7, 14, 21, and 28 days of exposure, and the bioaccumulation potential was evaluated using biosediment accumulation factors [BSAF (goc/glipid)]. Increase in total body burdens of all four chemicals in L. variegatus was rapid at day 2 and reached a steady-state level after 7 days in both single and mixture experiments. Tissue concentrations of fipronil peaked after 2 days and then decreased by 70 % in sediment experiments suggesting that in addition to the degradation of fipronil that occurred in the sediment, L. variegatus may also be able to metabolize fipronil. The calculated 28-day BSAF values varied among the chemicals and increased in the order fipronil (1.1) < triclosan (1.4) < dieldrin (21.8) < p,p'-DDE (49.8) in correspondence with the increasing degree of their hydrophobicity. The relatively high BSAF values for p,p'-DDE and dieldrin probably resulted from lower-than-expected sorption of chemicals to sediment organic matter either due to the nature of the plant-derived organic matter, as a result of the relatively short equilibration time among the various compartments, or due to ingestion of sediment particles by the worms.


Assuntos
Hidrocarbonetos Clorados/metabolismo , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Animais , Monitoramento Ambiental
7.
Gen Comp Endocrinol ; 192: 159-69, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23796460

RESUMO

A growing number of studies have examined transcriptional responses to sex steroids along the hypothalamic-pituitary-gonadal axis in teleost fishes. However, data are lacking on the molecular cascades that underlie progesterone signaling. The objective of this study was to characterize the transcriptional response in the ovary of fathead minnows (Pimephales promelas) in response to progesterone (P4). Fathead minnow ovaries were exposed in vitro to 500 ng P4/L. Germinal vesicle migration and breakdown (GVBD) was observed and microarrays were used to identify gene cascades affected by P4. Microarray analysis identified 1702 differentially expressed transcripts after P4 treatment. Functional enrichment analysis revealed that transcripts involved in the molecular functions of protein serine/threonine kinase activity, ATP binding, and activity of calcium channels were increased after P4 treatment. There was an overwhelming decrease in levels of transcripts of genes that are structural constituents of ribosomes with P4 treatment. There was also evidence for gene expression changes in steroid and maturation-related transcripts. Pathway analyses identified cell cycle regulation, insulin action, hedgehog, and B cell activation as pathways containing an over-representation of highly regulated transcripts. Significant regulatory sub-networks of P4-mediated transcripts included genes regulated by tumor protein p53 and E2F transcription factor 1. These data provide novel insight into the molecular signaling cascades that underlie P4-signaling in the ovary and identify genes and processes that may indicate premature GVBD due to environmental pollutants that mimic progestins.


Assuntos
Cyprinidae/metabolismo , Ovário/metabolismo , Progesterona/genética , Animais , Sinalização do Cálcio/genética , Feminino , Perfilação da Expressão Gênica , Progestinas/genética , Ribossomos/metabolismo
8.
Biol Reprod ; 87(3): 67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22786822

RESUMO

Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.


Assuntos
Bass , Proteínas do Ovo/genética , Hormônios Esteroides Gonadais/farmacologia , Insulina/farmacologia , Oócitos/efeitos dos fármacos , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Animais , Bass/genética , Bass/metabolismo , Bass/fisiologia , Clonagem Molecular , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/metabolismo , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/genética , Filogenia , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
9.
Aquat Toxicol ; 246: 106142, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306440

RESUMO

Glyphosate is the most used herbicide worldwide, with no historical comparison. It is used for genetically modified crops, and particularly in Florida, it is used as a sugar cane ripener. An aquatic formulation (Rodeo®) is used to treat aquatic weeds in waterbodies and drainage canals. Because of its extended use, glyphosate can run off or be sprayed directly into waterbodies, and chronically expose aquatic wildlife. Exposure in animal models has been associated with kidney and liver damage and glyphosate has been suggested as an endocrine disruptor. We exposed adult male largemouth bass for 21 days to two doses of glyphosate and Rodeo® (chemically equivalent concentration of glyphosate) at 0.5 mg L-1 and 10 mg L-1 and to a clean water control (n=4 fish/tank in quadruplicate). Concentrations during the experiment were corroborated with UHPLC-MS/MS. Total RNA was isolated from the trunk kidney and head kidney. RNA-seq was performed for the high doses compared to controls. Transcripts were analyzed with fish and mammalian pathway analyses software. Transcripts mapped to Zebrafish metabolic pathways using PaintOmics showed steroid hormone biosynthesis in the trunk kidney as the most significantly enriched pathway. Steroid hormones were measured in plasma by UHPLC-MS/MS. Total androgens were significantly reduced at 0.5 mg L-1 of glyphosate and at equivalent concentrations in Rodeo® compared to controls. 11-ketotestosterone and estrone concentrations were significantly reduced in all doses. A gene involved in the conversion of testosterone to 11-ketotestosterone was down-regulated by glyphosate. Using the mammalian pathway analysis algorithm, cellular processes associated with T-cell activation/development and intracellular pH were significantly enriched in the trunk kidney by glyphosate and Rodeo® exposure. Endocrine disruption was corroborated at the hormone and gene expression levels. Rodeo® and glyphosate share gene expression pathways, however, Rodeo® had more pronounced effects in largemouth bass.


Assuntos
Bass , Herbicidas , Poluentes Químicos da Água , Animais , Bass/metabolismo , Produtos Agrícolas/genética , Glicina/análogos & derivados , Herbicidas/metabolismo , Herbicidas/toxicidade , Hormônios/metabolismo , Masculino , Mamíferos/genética , Plantas Geneticamente Modificadas , Esteroides/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Glifosato
10.
Gen Comp Endocrinol ; 173(1): 86-95, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600210

RESUMO

Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17ß-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis.


Assuntos
Bass/sangue , Bass/metabolismo , Inibidor da Ligação a Diazepam/genética , Gônadas/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Animais , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Feminino , Técnicas In Vitro , Filogenia , RNA Mensageiro , Receptores de GABA/genética , Reprodução/genética , Reprodução/fisiologia , Testosterona/sangue
11.
Animals (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206249

RESUMO

Sea stars in research are often lethally sampled without available methodology to render them insensible prior to sampling due to concerns over sufficient sample quality for applied molecular techniques. The objectives of this study were to describe an inexpensive and effective two-step euthanasia method for adult common sea stars (Asterias rubens) and to demonstrate that high-quality RNA samples for further use in downstream molecular analyses can be obtained from pyloric ceca of MgCl2-immersed sea stars. Adult common sea stars (n = 15) were immersed in a 75 g/L magnesium chloride solution until they were no longer reactive to having their oral surface tapped with forceps (mean: 4 min, range 2-7 min), left immersed for an additional minute, and then sampled with sharp scissors. RNA from pyloric ceca (n = 10) was isolated using a liquid-liquid method, then samples were treated with DNase and analyzed for evaluation of RNA integrity number (RIN) for assessment of the quantity and purity of intact RNA. Aversive reactions to magnesium chloride solution were not observed and no sea stars regained spontaneous movement or reacted to sampling. The calculated RIN ranged from 7.3-9.8, demonstrating that the combination of animal welfare via the use of anesthesia and sampling for advanced molecular techniques is possible using this low-cost technique.

12.
Environ Toxicol Chem ; 40(7): 2005-2014, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33818832

RESUMO

The beneficial use of drinking water treatment residuals (DWTRs) faces barriers due primarily to uncertainties and concerns about their potential environmental impacts. We used total and water leachable toxic metal concentrations and 2 benthic organism-based bioassays to identify suitable DWTR substrates for introduction to freshwater systems. Using total metal contents and the consensus probable effect concentration concept, 3 DWTRs were selected and used in elutriate and toxicity studies. The concentrations of water leachable Ag, As, Cd, Cu, Cr, Ni, Pb, and Zn were below the US Environmental Protection Agency's ambient water quality criteria. Using the long-term 65-d life cycle Chironomus tentans test and 4 different endpoints (survival, adult emergence, egg case production, and number of eggs produced per female), no statistical differences were found between the DWTR treatments and the controls. Similarly, results obtained using the 10-d Hyalella azteca test showed no toxicity. However, although both survival and growth were recorded in all bioassays, the results of the 10-d C. tentans and the 28-d H. azteca tests were ambiguous. For C. tentans, 2 of the 3 DWTRs resulted in significantly lower survival rates compared to the controls. For H. azteca, no significant growth differences were observed between controls and DWTR treatments, but 2 of the 3 DWTRs resulted in significantly lower survival rates than the controls. Overall, these results suggest that certain DWTR substrates could be suitable for introduction to aquatic systems. Environ Toxicol Chem 2021;40:2005-2014. © 2021 SETAC.


Assuntos
Anfípodes , Água Potável , Poluentes Químicos da Água , Animais , Feminino , Água Doce , Sedimentos Geológicos/química , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
13.
Sci Rep ; 11(1): 4282, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608577

RESUMO

Two large-scale Florida manatee (Trichechus manatus latirostris) mortality episodes were reported on separate coasts of Florida in 2013. The east coast mortality episode was associated with an unknown etiology in the Indian River Lagoon (IRL). The west coast mortality episode was attributed to a persistent Karenia brevis algal bloom or 'red tide' centered in Southwest Florida. Manatees from the IRL also had signs of cold stress. To investigate these two mortality episodes, two proteomic experiments were performed, using two-dimensional difference in gel electrophoresis (2D-DIGE) and isobaric tags for relative and absolute quantification (iTRAQ) LC-MS/MS. Manatees from the IRL displayed increased levels of several proteins in their serum samples compared to controls, including kininogen-1 isoform 1, alpha-1-microglobulin/bikunen precursor, histidine-rich glycoprotein, properdin, and complement C4-A isoform 1. In the red tide group, the following proteins were increased: ceruloplasmin, pyruvate kinase isozymes M1/M2 isoform 3, angiotensinogen, complement C4-A isoform 1, and complement C3. These proteins are associated with acute-phase response, amyloid formation and accumulation, copper and iron homeostasis, the complement cascade pathway, and other important cellular functions. The increased level of complement C4 protein observed in the red tide group was confirmed through the use of Western Blot.


Assuntos
Biomarcadores , Proteoma , Proteômica , Trichechus manatus/metabolismo , Animais , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Mortalidade , Proteômica/métodos , Espectrometria de Massas em Tandem
14.
Environ Int ; 152: 106493, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740675

RESUMO

Florida manatees depend on freshwater environments as a source of drinking water and as warm-water refuges. These freshwater environments are in direct contact with human activities where glyphosate-based herbicides are being used. Glyphosate is the most used herbicide worldwide and it is intensively used in Florida as a sugarcane ripener and to control invasive aquatic plants. The objective of the present study was to determine the concentration of glyphosate and its breakdown product, aminomethylphosphonic acid (AMPA), in Florida manatee plasma and assess their exposure to manatees seeking a warm-water refuge in Crystal River (west central Florida), and in South Florida. We analyzed glyphosate's and AMPA's concentrations in Florida manatee plasma (n = 105) collected during 2009-2019 using HPLC-MS/MS. We sampled eight Florida water bodies between 2019 and 2020, three times a year: before, during and after the sugarcane harvest using grab samples and molecular imprinted passive Polar Organic Chemical Integrative Samplers (MIP-POCIS). Glyphosate was present in 55.8% of the sampled Florida manatees' plasma. The concentration of glyphosate has significantly increased in Florida manatee samples from 2009 until 2019. Glyphosate and AMPA were ubiquitous in water bodies. The concentration of glyphosate and AMPA was higher in South Florida than in Crystal River, particularly before and during the sugarcane harvest when Florida manatees depend on warm water refuges. Based on our results, Florida manatees were chronically exposed to glyphosate and AMPA, during and beyond the glyphosate applications to sugarcane, possibly associated with multiple uses of glyphosate-based herbicides for other crops or to control aquatic weeds. This chronic exposure in Florida water bodies may have consequences for Florida manatees' immune and renal systems which may further be compounded by other environmental exposures such as red tide or cold stress.


Assuntos
Herbicidas , Trichechus manatus , Animais , Glicina/análogos & derivados , Herbicidas/análise , Organofosfonatos , Espectrometria de Massas em Tandem , Glifosato
15.
Sci Total Environ ; 785: 147284, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957588

RESUMO

Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17ß-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17ß-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75-304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays - based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Bioensaio , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estrogênios/análise , Estrogênios/toxicidade , Estrona , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 743: 140401, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653700

RESUMO

Natural and synthetic steroid hormones, excreted by humans and farmed animals, have been considered as important sources of environmental endocrine disruptors. A suite of estrogens, androgens and progestogens was measured in the wastewater treatment plant outfall (WWTPO) of Chascomús city (Buenos Aires province, Argentina), and receiving waters located downstream and upstream from the WWTPO, using solid phase extraction and high-performance liquid chromatography mass spectrometry. The following natural hormones were measured: 17ß-estradiol (E2), estrone (E1), estriol (E3), testosterone (T), 5α-dihydrotestosterone (DHT), progesterone (P), 17-hydroxyprogesterone (17OHP) and the synthetic estrogen 17α-ethinylestradiol (EE2). Also, in order to complement the analytical method, the estrogenic activity in these surface water samples was evaluated using the in vitro transactivation bioassay that measures the estrogen receptor (ER) activity using mammalian cells. All-natural steroid hormones measured, except 17OHP, were detected in all analyzed water samples. E3, E1, EE2 and DHT were the most abundant and frequently detected. Downstream of the WWTPO, the concentration levels of all compounds decreased reaching low levels at 4500 m from the WWTPO. Upstream, 1500 m from the WWTPO, six out of eight steroid hormones analyzed were detected: DHT, T, P, 17OHP, E3 and E2. Moreover, water samples from the WWTPO and 200 m downstream from it showed estrogenic activity exceeding that of the EC50 of the E2 standard curve. In sum, this work demonstrates the presence of sex steroid hormones and estrogenic activity, as measured by an in vitro assay, in superficial waters of the Pampas region. It also suggests the possibility of an unidentified source upstream of the wastewater outfall.


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Animais , Argentina , Estrogênios , Estrona/análise , Humanos , Lagos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32992212

RESUMO

Toxaphene is an organochlorine pesticide and environmental contaminant that is concerning due to its atmospheric transport and persistence in soil. In Florida, toxaphene and other organochlorine pesticides were used heavily in agriculture on the north shore of Lake Apopka and they are still detectable in soil. Wild largemouth bass that inhabit the lake and the marshes along the north shore have been exposed to a variety of organochlorine pesticides including dieldrin, methoxychlor, and p,p'-DDE, among others. While these other organochlorine pesticides have been studied for their endocrine disrupting effects in largemouth bass, there is little information for toxaphene. In this study, male and female largemouth bass were given food containing 50 mg/kg toxaphene for almost 3 months, to achieve tissue levels similar to those found in fish at Lake Apopka. Sex-specific toxicity was then evaluated by measuring various reproductive endpoints and transcriptomic changes. In females, gonadosomatic index showed a trend towards reduction (p = 0.051) and plasma vitellogenin was reduced by ~40% relative to controls. However plasma levels of 17ß-estradiol and testosterone were not perturbed by toxaphene exposure. These data suggest that toxaphene does not act as a weak estrogen as many other organochlorine pesticides do, but rather appears to be acting as an antiestrogen in female fish. There were no obvious changes in the gonadosomatic index and plasma hormones in male bass. However, ex vivo explant experiments revealed that toxaphene prevented human chorionic gonadotropin-stimulated testosterone production in the testis. This suggested that toxaphene had anti-androgenic effects in males. Subsequent transcriptomic analyses of the testis revealed that androgen receptor/beta-2-microglobulin signaling was up-regulated while insulin-related pathways were suppressed with toxaphene, which could be interpreted as a compensatory response to androgen suppression. In the male liver, the transcriptome analysis revealed an overwhelming suppression in immune-related signaling cascades (e.g. lectin-like receptor and ITSM-Containing Receptor signaling, CD16/CD14 Proinflammatory Monocyte Activation, and CD38/CD3-JUN/FOS/NF-kB Signaling in T-cell Proliferation). Overall, this study showed that toxaphene induced sex-specific effects. The transcriptomic and physiological responses observed can contribute to the development of adverse outcome pathways for toxaphene exposure in fish.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Gônadas/fisiologia , Fígado/fisiologia , Reprodução , Toxafeno/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bass , Disruptores Endócrinos/toxicidade , Feminino , Gônadas/efeitos dos fármacos , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Masculino
18.
Aquat Toxicol ; 229: 105653, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33080536

RESUMO

Oil spill accidents are a major concern for aquatic organisms. In recent history, the Deepwater Horizon blowout spilled 500 million liters of crude oil into the Gulf of Mexico. Corexit 9500A was used to disperse the oil since it was the method approved at that time, despite safety concerns about its use. A better solution is necessary for dispersing oil from spills that reduces the toxicity to exposed aquatic organisms. To address this challenge, novel engineered nanoparticles were designed using silica cores grafted with hyperbranched poly(glycidol) branches. Because the silica core and polymers are known to be biocompatible, we hypothesized that these particles are nontoxic to fathead minnows (Pimephales promelas) and would decrease their exposure to oil polyaromatic hydrocarbons. Fathead minnow embryos, juveniles and adult stages were exposed to the particles alone or in combination with a water-accommodated fraction of oil. Acute toxicity of nanoparticles to fish was tested by measuring mortality. Sub-lethal effects were also measured including gene expression of cytochrome P450 1a (cyp1a) mRNA and heart rate in embryos. In addition, a mixture of particles plus the water-accommodated fraction was directly introduced to adult female fathead minnows by gavage. Three different nanoparticle concentrations were used (2, 10, and 50 mg/L) in either artificial fresh water or the water-accommodated fraction of the oil. In addition, nanoparticle-free controls were carried out in the two solutions. No significant mortality was observed for any age group or nanoparticle concentration, suggesting the safety of the nanoparticles. In the presence of the water-accommodated fraction alone, juvenile and adult fathead minnows responded by increasing expression of cyp1a. The addition of nanoparticles to the water-accommodated fraction reduced cyp1a gene expression in treatments. Heart rate was also restored to normal parameters in embryos co-exposed to nanoparticles and to the water-accommodated fraction. Measurement of polyaromatic hydrocarbons confirmed their presence in the tested solutions and the reduction of available PAH in WAF treated with the nanoparticles. Our findings suggest the engineered nanoparticles may be protecting the fish by sequestering polyaromatic hydrocarbons from oil, measured indirectly by the induction of cypa1 mRNAs. Furthermore, chemical analysis showed a reduction in PAH content in the water accommodated fraction with the presence of nanoparticles.


Assuntos
Cyprinidae/metabolismo , Nanopartículas/toxicidade , Poluição por Petróleo/análise , Dióxido de Silício/toxicidade , Testes de Toxicidade , Animais , Cyprinidae/embriologia , Cyprinidae/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Golfo do México , Frequência Cardíaca/efeitos dos fármacos , Micelas , Nanopartículas/química , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Dióxido de Silício/química , Poluentes Químicos da Água/toxicidade
19.
BMC Genomics ; 10: 308, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19594897

RESUMO

BACKGROUND: Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (Pimephales promelas) for 48 hours via the water to 2, 5, 10, and 50 ng 17alpha-ethinylestradiol (EE2)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE(2)/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels. RESULTS: Steroidogenesis was down-regulated by EE(2) as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE(2)/L or with the mixture of 5 ng EE(2)/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE(2) were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern. CONCLUSION: Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens.


Assuntos
Cyprinidae/genética , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Animais , Cyprinidae/fisiologia , Etinilestradiol/farmacologia , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Testículo/metabolismo , Testosterona/sangue , Vitelogeninas/sangue
20.
Gen Comp Endocrinol ; 163(3): 306-17, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19416730

RESUMO

The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.


Assuntos
Bass , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas/metabolismo , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Receptores de Estrogênio/metabolismo , Estações do Ano , Animais , Bass/genética , Bass/metabolismo , Feminino , Masculino , RNA Mensageiro/metabolismo , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA