Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(3): F394-F410, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153851

RESUMO

Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.


Assuntos
Obstrução Ureteral , Animais , Camundongos , Fibrose , Expressão Gênica , Rim , Camundongos Knockout
2.
Clin Exp Nephrol ; 27(4): 329-339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36576647

RESUMO

BACKGROUND: Evaluating patients' risk for acute kidney injury (AKI) is crucial for positive outcomes following cardiac surgery. Our aims were first to select candidate risk factors from pre- or intra-operative real-world parameters collected from routine medical care and then evaluate potential associations between those parameters and risk of onset of post-operative cardiac surgery-associated AKI (CSA-AKI). METHOD: We conducted two cohort studies in Japan. The first was a single-center prospective cohort study (n = 145) to assess potential association between 115 clinical parameters collected from routine medical care and CSA-AKI (≥ Stage1) risk in the population of patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). To select candidate risk factors, we employed random forest analysis and applied survival analyses to evaluate association strength. In a second retrospective cohort study, we targeted patients undergoing cardiac surgery with CPB (n = 619) and evaluated potential positive associations between CSA-AKI incidence and risk factors suggested by the first cohort study. RESULTS: Variable selection analysis revealed that parameters in clinical categories such as circulating inflammatory cells, CPB-related parameters, ventilation, or aging were potential CSA-AKI risk factors. Survival analyses revealed that increased counts of pre-operative circulating monocytes and neutrophils were associated with CSA-AKI incidence. Finally, in the second cohort study, we found that increased pre-operative circulating monocyte counts were associated with increased CSA-AKI incidence. CONCLUSIONS: Circulating monocyte counts in the pre-operative state are associated with increased risk of CSA-AKI development. This finding may be useful in stratifying patients for risk of developing CSA-AKI in routine clinical practice.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Humanos , Estudos de Coortes , Monócitos , Estudos Retrospectivos , Estudos Prospectivos , Ponte Cardiopulmonar/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia
3.
Int J Clin Oncol ; 28(10): 1315-1332, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453935

RESUMO

Cisplatin should be administered with diuretics and Magnesium supplementation under adequate hydration to avoid renal impairment. Patients should be evaluated for eGFR (estimated glomerular filtration rate) during the treatment with pemetrexed, as kidney injury has been reported. Pemetrexed should be administered with caution in patients with a CCr (creatinine clearance) < 45 mL/min. Mesna is used to prevent hemorrhagic cystitis in patients receiving ifosfamide. Febuxostat is effective in avoiding hyperuricemia induced by TLS (tumor lysis syndrome). Preventative rasburicase is recommended in high-risk cases of TLS. Thrombotic microangiopathy could be triggered by anticancer drugs and there is no evidence of efficacy of plasma exchange therapy. When proteinuria occurs during treatment with anti-angiogenic agents or multi-kinase inhibitors, dose reductions or interruptions based on grading should be considered. Grade 3 proteinuria and renal dysfunction require urgent intervention, including drug interruption or withdrawal, and referral to a nephrologist should be considered. The first-line drugs used for blood pressure elevation due to anti-angiogenic agents are ACE (angiotensin-converting enzyme) inhibitors and ARBs (angiotensin receptor blockers). The protein binding of drugs and their pharmacokinetics are considerably altered in patients with hypoalbuminemia. The clearance of rituximab is increased in patients with proteinuria, and the correlation with urinary IgG suggests similar pharmacokinetic changes when using other antibody drugs. AIN (acute interstitial nephritis) is the most common cause of ICI (immune checkpoint inhibitor)-related kidney injury that is often treated with steroids. The need for renal biopsy in patients with kidney injury that occurs during treatment with ICI remains controversial.

4.
Int J Clin Oncol ; 28(10): 1259-1297, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382749

RESUMO

The prevalence of CKD may be higher in patients with cancer than in those without due to the addition of cancer-specific risk factors to those already present for CKD. In this review, we describe the evaluation of kidney function in patients undergoing anticancer drug therapy. When anticancer drug therapy is administered, kidney function is evaluated to (1) set the dose of renally excretable drugs, (2) detect kidney disease associated with the cancer and its treatment, and (3) obtain baseline values for long-term monitoring. Owing to some requirements for use in clinical practice, a GFR estimation method such as the Cockcroft-Gault, MDRD, CKD-EPI, and the Japanese Society of Nephrology's GFR estimation formula has been developed that is simple, inexpensive, and provides rapid results. However, an important clinical question is whether they can be used as a method of GFR evaluation in patients with cancer. When designing a drug dosing regimen in consideration of kidney function, it is important to make a comprehensive judgment, recognizing that there are limitations regardless of which estimation formula is used or if GFR is directly measured. Although CTCAEs are commonly used as criteria for evaluating kidney disease-related adverse events that occur during anticancer drug therapy, a specialized approach using KDIGO criteria or other criteria is required when nephrologists intervene in treatment. Each drug is associated with the different disorders related to the kidney. And various risk factors for kidney disease associated with each anticancer drug therapy.


Assuntos
Antineoplásicos , Insuficiência Renal Crônica , Humanos , Taxa de Filtração Glomerular , Rim , Testes de Função Renal , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Antineoplásicos/efeitos adversos , Creatinina
5.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511089

RESUMO

Renal fibrosis is the final manifestation of chronic kidney disease (CKD); its prevention is vital for controlling CKD progression. Indoxyl sulfate (IS), a typical sulfate-conjugated uremic solute, is produced in the liver via the enzyme sulfotransferase (SULT) 1A1 and accumulates significantly during CKD. We investigated the toxicopathological role of IS in renal fibrosis using Sult1a1-KO mice and the underlying mechanisms. The unilateral ureteral obstruction (UUO) model was created; kidney IS concentrations, inflammation, and renal fibrosis were assessed on day 14. After UUO treatment, inflammation and renal fibrosis were exacerbated in WT mice, with an accumulation of IS in the kidney. However, they were significantly suppressed in Sult1a1-KO mice. CD206+ expression was upregulated, and ß-catenin expression was downregulated in Sult1a1-KO mice. To confirm the impact of erythropoietin (EPO) on renal fibrosis, we evaluated the time-dependent expression of EPO. In Sult1a1-KO mice, EPO mRNA expression was improved considerably; UUO-induced renal fibrosis was further attenuated by recombinant human erythropoietin (rhEPO). Thus, UUO-induced renal fibrosis was alleviated in Sult1a1-KO mice with a decreased accumulation of IS. Our findings confirmed the pathological role of IS in renal fibrosis and identified SULT1A1 as a new therapeutic target enzyme for preventing and attenuating renal fibrosis.


Assuntos
Indicã , Rim , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Eritropoetina/metabolismo , Fibrose , Indicã/metabolismo , Inflamação/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Obstrução Ureteral/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958726

RESUMO

In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.


Assuntos
Hipertensão , Podócitos , Serpinas , Ratos , Animais , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Fibrinolisina , Podócitos/metabolismo , Ratos Endogâmicos Dahl , Serpinas/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Proteinúria/patologia , Pressão Sanguínea , Rim/metabolismo
7.
Am J Physiol Renal Physiol ; 322(5): F577-F586, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35343850

RESUMO

Acute kidney injury (AKI) is a life-threatening condition and often progresses to chronic kidney disease or the development of other organ dysfunction even after recovery. Despite the increased recognition and high prevalence of AKI worldwide, there has been no established treatment so far. The aim of this study was to investigate the renoprotective effect of Kyoto University substance 121 (KUS121), a novel valosin-containing protein modulator, on AKI. In in vitro experiments, we evaluated cell viability and ATP levels of proximal tubular cells with or without KUS121 under endoplasmic reticulum (ER) stress conditions. In in vivo experiments, the effects of KUS121 were examined in mice with AKI caused by ischemia-reperfusion injury. ER-associated degradation (ERAD)-processing capacity was evaluated by quantification of the ERAD substrate CD3delta-YFP. KUS121 protected proximal tubular cells from cell death under ER stress. The apoptotic response was mitigated as indicated by the suppression of C/EBP homologous protein expression and caspase-3 cleavage, with maintained intracellular ATP levels by KUS121 administration. KUS121 treatment suppressed the elevation of serum creatinine and neutrophil gelatinase-associated lipocalin levels and attenuated renal tubular damage after ischemia-reperfusion. The expression of inflammatory cytokines in the kidney was also suppressed in the KUS121-treated group. Valosin-containing protein expression levels were not altered by KUS121 both in vitro and in vivo. KUS121 treatment restored ERAD-processing capacity associated with potentiation of its upstream pathway, phosphorylated inositol-requiring enzyme-1α, and spliced X box-binding protein-1. In conclusion, these findings indicate that KUS121 can protect renal tubular cells from ER stress-induced injury, suggesting that KUS121 could be a novel and promising therapeutic compound for ischemia-associated AKI.NEW & NOTEWORTHY Novel findings of this study are as follows: 1) Kyoto University substance 121 (KUS121), a novel valosin-containing protein (VCP) modulator, can reduce ATP consumption of VCP; 2) KUS121 reduced endoplasmic reticulum (ER) stress and improved cell viability in proximal tubular cells; 3) KUS121 exerted renoprotective effects against ischemia-reperfusion injury; and 4) KUS121 may prevent ischemic acute kidney injury with ATP retention and restoring ER-associated degradation capacity.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Degradação Associada com o Retículo Endoplasmático , Humanos , Isquemia/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Proteína com Valosina/metabolismo
8.
Nephrol Dial Transplant ; 37(3): 444-453, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-34610136

RESUMO

BACKGROUND: Osteocrin (OSTN), a bone-derived humoral factor, was reported to act on heart and bone by potentiating the natriuretic peptide (NP) system. Ostn gene polymorphisms have been associated with renal function decline, but its pathophysiological role in the kidney remains unclear. METHODS: The role of endogenous OSTN was investigated using systemic Ostn-knockout (KO) mice. As a model for OSTN administration, liver-specific Ostn-overexpressing mice crossed with KO (KO-Tg) were generated. These mice were subjected to unilateral ischemia-reperfusion injury (IRI) and renal lesions after 21 days of insult were evaluated. A comprehensive analysis of the Wnt/ß-catenin pathway was performed using a polymerase chain reaction (PCR) array. Reporter plasmid-transfected proximal tubular cells (NRK52E) were used to investigate the mechanism by which OSTN affects the pathway. RESULTS: After injury, KO mice showed marginal worsening of renal fibrosis compared with wild-type mice, with comparable renal atrophy. KO-Tg mice showed significantly ameliorated renal atrophy, fibrosis and tubular injury, together with reduced expressions of fibrosis- and inflammation-related genes. The PCR array showed that the activation of the Wnt/ß-catenin pathway was attenuated in KO-Tg mice. The downstream targets Mmp7, Myc and Axin2 showed similar results. MMP7 and Wnt2 were induced in corticomedullary proximal tubules after injury, but not in KO-Tg. In NRK52E, OSTN significantly potentiated the inhibitory effects of NP on transforming growth factor ß1-induced activation of the Wnt/ß-catenin pathway, which was reproduced by a cyclic guanosine monophosphate analog. CONCLUSIONS: Ectopic Ostn overexpression ameliorated subsequent renal injury following ischemia-reperfusion. OSTN could represent possible renoprotection in acute to chronic kidney disease transition, thus serving as a potential therapeutic strategy.


Assuntos
Injúria Renal Aguda , Proteínas Musculares , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Fatores de Transcrição , Injúria Renal Aguda/patologia , Animais , Fibrose , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/genética , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/genética
9.
J Pharmacol Sci ; 150(4): 204-210, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344042

RESUMO

Serine proteases (SPs) play physiological roles in the kidney. We previously reported that a synthetic SP inhibitor, camostat mesilate (CM), suppressed sodium reabsorption in the renal tubule and showed natriuretic effects in aldosterone-infused rats. Here, we aimed to explore novel physiological roles of SPs in the renal tubule and understand the mechanism of actions of SP inhibitors, by administering CM to healthy rats. Sprague-Dawley rats were classified into control and CM (subcutaneous sustained-release pellet) groups and sacrificed on day 7. CM significantly increased urine volumes by approximately two-fold in a urinary sodium- and osmolyte excretion-independent manner, indicating the occurrence of free water excretion. Serum vasopressin, potassium, and calcium levels and the osmolality in the renal medulla, which all affect free water reabsorption in the renal tubule, remained unchanged after CM administration. CM decreased urinary exosomal AQP2 excretion, suggesting suppression of AQP2 activity in the collecting duct. These changes were reversed by desmopressin infusion. Water diuresis caused by CM was independent of its action on prostasin or TMPRSS4. Our results revealed the association of SP inhibition with free water handling and demonstrated that CM administration exerted diuretic effects with AQP2 downregulation, suggesting SP inhibitors as a new class of aquaretic drugs.


Assuntos
Aquaporina 2 , Inibidores de Serina Proteinase , Ratos , Animais , Inibidores de Serina Proteinase/farmacologia , Ratos Sprague-Dawley , Sódio/metabolismo , Água/metabolismo
10.
FASEB J ; 34(11): 15577-15590, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32996639

RESUMO

Mesangial lesions and podocyte injury are essential manifestations of the progression of diabetic kidney disease (DKD). Although cross-communication between mesangial cells (MCs) and podocytes has recently been suggested by the results of single-nucleus RNA sequencing analyses, the molecular mechanisms and role in disease progression remain elusive. Our cDNA microarray data of diabetic mouse glomeruli suggested the involvement of endoplasmic reticulum (ER) stress in DKD pathophysiology. In vitro experiments revealed the suppression of the ER-associated degradation (ERAD) pathway and induction of apoptosis in podocytes that were stimulated with the supernatant of MCs cultured in high glucose conditions. In diabetic mice, ERAD inhibition resulted in exacerbated albuminuria, increased apoptosis in podocytes, and reduced nephrin expression associated with the downregulation of ERAD-related biomolecules. Flow cytometry analysis of podocytes isolated from MafB (a transcription factor known to be expressed in macrophages and podocytes)-GFP knock-in mice revealed that ERAD inhibition resulted in decreased nephrin phosphorylation. These findings suggest that an intraglomerular cross talk between MCs and podocytes can inhibit physiological ERAD processes and suppress the phosphorylation of nephrin in podocytes, which thereby lead to podocyte injury under diabetic conditions. Therapeutic intervention of the ERAD pathway through the cross talk between these cells is potentially a novel strategy for DKD.


Assuntos
Albuminúria/patologia , Apoptose , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/patologia , Degradação Associada com o Retículo Endoplasmático , Células Mesangiais/patologia , Podócitos/patologia , Albuminúria/etiologia , Albuminúria/metabolismo , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Estresse do Retículo Endoplasmático , Fator de Transcrição MafB/metabolismo , Masculino , Células Mesangiais/metabolismo , Camundongos , Camundongos Obesos , Podócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
J Pharmacol Sci ; 146(4): 192-199, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116732

RESUMO

Metabolic syndrome (MetS) is associated with chronic kidney disease and proteinuria. Previously, we reported that a synthetic serine protease inhibitor, camostat mesilate (CM), mitigated hypertension and proteinuria in rodent disease models. The present study evaluated the anti-hypertensive and anti-proteinuric effects of CM in MetS model rats (SHR/ND mcr-cp). Rats were divided into normal salt-fed (NS), high salt-fed (HS), HS and CM-treated (CM), and HS and hydralazine-treated (Hyd) groups. Rats were sacrificed after four weeks of treatment. Severe hypertension and proteinuria were observed in the HS group. Although CM and Hyd equally alleviated hypertension, CM suppressed proteinuria and glomerular sclerosis more efficiently than Hyd. The HS group revealed a decrease in podocyte number and podocyte-specific molecules, together with an increase in glomerular apoptotic cells and apoptosis-related proteins in the kidney. These changes were significantly attenuated by CM, but not by Hyd. Furthermore, CM ameliorated the apoptotic signals in murine cultured podocytes stimulated with the high glucose and aldosterone medium. In conclusion, CM could exert renoprotective effects in MetS model rats, together with the inhibition of podocyte apoptosis. Our study suggests that serine protease inhibition may become a new therapeutic strategy against MetS-related hypertension and renal injuries.


Assuntos
Apoptose/efeitos dos fármacos , Ésteres/farmacologia , Guanidinas/farmacologia , Síndrome Metabólica/patologia , Podócitos/patologia , Inibidores de Proteases/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Masculino , Síndrome Metabólica/complicações , Camundongos , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Ratos Endogâmicos SHR , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia
12.
Nephrol Dial Transplant ; 35(5): 854-860, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840173

RESUMO

BACKGROUND: Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS: We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS: Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION: We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.


Assuntos
Proteínas Semelhantes a Angiopoietina/sangue , Biomarcadores/sangue , Nefropatias/mortalidade , Diálise Renal/mortalidade , Idoso , Proteína 2 Semelhante a Angiopoietina , Proteína C-Reativa/análise , Progressão da Doença , Feminino , Humanos , Nefropatias/sangue , Nefropatias/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida
13.
BMC Nephrol ; 21(1): 158, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366231

RESUMO

BACKGROUND: The inflammatory mediator calprotectin (CPT, myeloid-related protein 8/14) is known as an endogenous ligand contributing to pathophysiology in inflammatory diseases. Serum CPT reportedly became a potential biomarker in these conditions, though there is no report predicting the prognosis in hemodialysis patients. The aim of this study is to investigate the predictive role of serum CPT on mortality in hemodialysis patients. METHODS: We conducted a multicenter, observational cohort study of 388 Japanese subjects undergoing hemodialysis. Serum CPT were measured using an ELISA. The potential associations between serum CPT and clinical variables were cross-sectionally examined. Multivariate Cox regression was used to estimate the association between serum CPT, high-sensitivity C reactive protein (hs-CRP), white blood cell (WBC) count and mortality. Median follow-up was 6.6 years. RESULTS: The median CPT level was 6108 ng/ml (median in healthy subjects, 2800) at baseline. Serum CPT positively correlated with WBC count (ρ = 0.54, P < 0.001) and hs-CRP values (ρ = 0.35, P < 0.001). In multivariate analysis, hs-CRP was an independent predictor of all-cause mortality after adjusting confounding factors (middle vs. low: hazard ratio [HR] 2.09, 95% confidence interval [CI] 1.23-3.66; high vs. low: 2.47, 1.40-4.47). In the analysis by stratum of phosphate levels, elevated CPT levels were significantly associated with all-cause mortality in the highest tertile (18.1; 3.15-345.9) among the high-phosphate group, but not among the low-phosphate group. CONCLUSIONS: Serum CPT would become a potential predictive marker on mortality in hemodialysis patients with high-phosphate levels.


Assuntos
Falência Renal Crônica/sangue , Falência Renal Crônica/mortalidade , Complexo Antígeno L1 Leucocitário/sangue , Fosfatos/sangue , Idoso , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doença Crônica , Feminino , Seguimentos , Humanos , Inflamação/sangue , Estimativa de Kaplan-Meier , Falência Renal Crônica/terapia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Diálise Renal , Estudos Retrospectivos
14.
Nephrology (Carlton) ; 24(11): 1131-1141, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30582257

RESUMO

AIM: Metabolic acidosis occurs due to insufficient urinary ammonium excretion as chronic kidney disease (CKD) advances. Because obese subjects tend to have excessive consumption of protein and sodium chloride, they are prone to chronic acid loading and may therefore be predisposed to acid-induced kidney injury. We investigated the involvement of obesity in ammoniagenesis within damaged kidneys. METHODS: In the clinical study, urinary ammonium excretion was compared between 13 normal-weight and 15 overweight/obese CKD outpatients whose creatinine clearance was higher than 25 mL/min. For animal experiments, NH4 Cl was loaded to KKAy/TaJcl (KKAy), a metabolic syndrome model, and control BALB/c mice for 20 weeks. Kidney injury was evaluated through histological analysis and the expression of proinflammatory markers. RESULTS: Urinary ammonium excretion was lower in overweight/obese patients than in normal-weight patients, while intakes of protein and sodium chloride were higher in overweight/obese patients, implying that subclinical metabolic acidosis occurs in overweight/obese patients. The increase in urinary ammonium excretion induced by NH4 Cl loading was attenuated in KKAy mice after 16 weeks, whereas the increase was maintained in BALB/c mice throughout the study period. Histological study and real-time polymerase chain reaction analysis showed proximal tubular injury and enhanced expression levels of neutrophil gelatinase-associated lipocalin (NGAL) protein and messenger RNA, respectively, in KKAy mice but not in BALB/c mice. Finally, urinary NGAL concentration was higher in overweight/obese patients than in normal-weight patients in the early stage of CKD. CONCLUSION: Obesity could facilitate the induction of subclinical metabolic acidosis and acid accumulation in the kidney, which may potentially exacerbate kidney injury in CKD patients.


Assuntos
Amônia/urina , Túbulos Renais/patologia , Obesidade/urina , Sobrepeso/urina , Insuficiência Renal Crônica/urina , Acidose/etiologia , Ácidos/urina , Idoso , Animais , Feminino , Humanos , Lipocalina-2/urina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
15.
Am J Physiol Renal Physiol ; 315(5): F1347-F1357, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30043627

RESUMO

Cisplatin (CDDP) is a widely-used chemotherapeutic drug for solid tumors, but its nephrotoxicity is a major dose-limiting factor. Doxycycline (Dox) is a tetracycline antibiotic that has been commonly used in a variety of infections. Dox has been shown to possess several other properties, including antitumor, anti-inflammatory, antioxidative, and matrix metalloproteinase (MMP)-inhibiting actions. We, therefore, investigated whether Dox exerts renoprotective effects in CDDP-induced acute kidney injury (AKI). Twelve-week-old male C57BL/6J mice were divided into the following groups: 1) control, 2) Dox (2 mg/ml in drinking water), 3) CDDP (25 mg/kg body weight, intraperitoneally), and 4) CDDP+Dox. After seven days of pretreatment with Dox, CDDP was administered and the animals were killed at day 1 or day 3. We evaluated renal function along with renal histological damage, inflammation, oxidative stress, and apoptosis. MMP and serine protease activities in the kidney tissues were assessed using zymography. Administration of CDDP exhibited renal dysfunction and caused histological damage predominantly in the proximal tubules. Dox did not affect either expression of CDDP transporters or the accumulation of CDDP in renal tissues; however, it significantly ameliorated renal dysfunction and histological changes together with reduced detrimental responses, such as oxidative stress and inflammation in the kidneys. Furthermore, Dox inhibited the activity of MMP-2 and MMP-9, as well as serine proteases in the kidney tissues. Finally, Dox markedly mitigated apoptosis in renal tubules. Thus, Dox ameliorated CDDP-induced AKI through its pleiotropic effects. Our results suggest that Dox may become a novel strategy for the prevention of CDDP-induced AKI in humans.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino , Doxiciclina/farmacologia , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Citoproteção , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia
16.
J Am Soc Nephrol ; 28(1): 278-289, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27382987

RESUMO

The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreERT2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 µg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10-5, which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy.


Assuntos
Albuminas/metabolismo , Nefropatias Diabéticas/metabolismo , Néfrons/metabolismo , Reabsorção Renal , Albuminúria/genética , Animais , Nefropatias Diabéticas/genética , Glomérulos Renais/metabolismo , Lipocalina-2/urina , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
J Pharmacol Sci ; 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-29110957

RESUMO

The kidney expresses protease-activated receptor-1 (PAR-1). PAR-1 is known as a thrombin receptor, but its role in kidney injury is not well understood. In this study, we examined the contribution of PAR-1 to kidney glomerular injury and the effects of its inhibition on development of nephropathy. Mice were divided into 3 groups: control, doxorubicin + vehicle (15 mg/kg doxorubicin and saline) and doxorubicin + Q94 (doxorubicin at 15 mg/kg and the PAR-1 antagonist Q94 at 5 mg/kg/d) groups. Where indicated, doxorubicin was administered intravenously and PAR-1 antagonist or saline vehicle by subcutaneous osmotic mini-pump. PAR-1 expression was increased in glomeruli of mice treated with doxorubicin. Q94 treatment significantly suppressed the increased albuminuria in these nephropathic mice. Pathological analysis showed that Q94 treatment significantly attenuated periodic acid-Schiff and desmin staining, indicators of podocyte injury, and also decreased glomerular levels of podocin and nephrin. Furthermore, thrombin increased intracellular calcium levels in podocytes. This increase was suppressed by Q94 and Rox4560, a transient receptor potential cation channel (TRPC)3/6 antagonist. In addition, both Q94 and Rox4560 suppressed the doxorubicin-induced increase in activities of caspase-9 and caspase-3 in podocytes. These data suggested that PAR-1 contributes to development of podocyte and glomerular injury and that PAR-1 antagonists have therapeutic potential.

18.
Am J Physiol Renal Physiol ; 310(11): F1206-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27029428

RESUMO

Thermal therapy has become a nonpharmacological therapy in clinical settings, especially for cardiovascular diseases. However, the practical role of thermal therapy on chronic kidney disease remains elusive. We performed the present study to investigate whether a modified thermal protocol, repeated mild thermal stimulation (MTS), could affect renal damages in chronic kidney disease using a mouse renal ablation model. Mice were subjected to MTS or room temperature (RT) treatment once daily for 4 wk after subtotal nephrectomy (Nx) or sham operation (Sh). We revealed that MTS alleviated renal impairment as indicated by serum creatinine and albuminuria in Nx groups. In addition, the Nx + MTS group showed attenuated tubular histological changes and reduced urinary neutrophil gelatinase-associated lipocalin excretion approximately by half compared with the Nx + RT group. Increased apoptotic signaling, such as TUNEL-positive cell count and cleavage of caspase 3, as well as enhanced oxidative stress were significantly reduced in the Nx + MTS group compared with the Nx + RT group. These changes were accompanied with the restoration of kidney Mn-SOD levels by MTS. Heat shock protein 27, a key molecular chaperone, was phosphorylated by MTS only in Nx kidneys rather than in Sh kidneys. MTS also tended to increase the phosphorylation of p38 MAPK and Akt in Nx kidneys, possibly associated with the activation of heat shock protein 27. Taken together, these results suggest that modified MTS can protect against renal injury in a rodent model of chronic kidney disease.


Assuntos
Albuminúria/terapia , Hipertermia Induzida/métodos , Rim/fisiopatologia , Insuficiência Renal Crônica/terapia , Albuminúria/fisiopatologia , Animais , Apoptose/fisiologia , Creatinina/sangue , Modelos Animais de Doenças , Testes de Função Renal , Lipocalinas/urina , Masculino , Camundongos , Nefrectomia , Estresse Oxidativo/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Resultado do Tratamento
19.
J Am Soc Nephrol ; 26(12): 3035-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855781

RESUMO

Urine output is widely used as a criterion for the diagnosis of AKI. Although several potential mechanisms of septic AKI have been identified, regulation of urine flow after glomerular filtration has not been evaluated. This study evaluated changes in urine flow in mice with septic AKI. The intratubular urine flow rate was monitored in real time by intravital imaging using two-photon laser microscopy. The tubular flow rate, as measured by freely filtered dye (FITC-inulin or Lucifer yellow), time-dependently declined after LPS injection. At 2 hours, the tubular flow rate was slower in mice injected with LPS than in mice injected with saline, whereas BP and GFR were similar in the two groups. Importantly, fluorophore-conjugated LPS selectively accumulated in the proximal tubules that showed reduced tubular flow at 2 hours and luminal obstruction with cell swelling at 24 hours. Delipidation of LPS or deletion of Toll-like receptor 4 in mice abolished these effects, whereas neutralization of TNF-α had little effect on LPS-induced tubular flow retention. Rapid intravenous fluid resuscitation within 6 hours improved the tubular flow rate only when accompanied by the dilation of obstructed proximal tubules with accumulated LPS. These findings suggest that LPS reduces the intratubular urine flow rate during early phases of endotoxemia through a Toll-like receptor 4-dependent mechanism, and that the efficacy of fluid resuscitation may depend on the response of tubules with LPS accumulation.


Assuntos
Injúria Renal Aguda/fisiopatologia , Endotoxemia/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Animais , Anticorpos/farmacologia , Pressão Sanguínea , Endotoxemia/induzido quimicamente , Endotoxemia/complicações , Hidratação , Taxa de Filtração Glomerular , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligúria/complicações , Oligúria/fisiopatologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Urodinâmica/efeitos dos fármacos
20.
Diabetologia ; 58(9): 2169-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063197

RESUMO

AIMS/HYPOTHESIS: The accumulation of extracellular matrix (ECM) is a characteristic of diabetic nephropathy, and is partially caused by profibrotic proteins TGF-ß and connective tissue growth factor (CTGF). We aimed to identify microRNAs (miRNAs) targeting CTGF on podocytes in diabetic nephropathy. METHODS: We investigated miRNAs targeting CTGF on podocytes with miRNA array analysis and identified a candidate miRNA, miR-26a. Using overexpression and silencing of miR-26a in cultured podocytes, we examined changes of ECM and its host genes. We further investigated glomerular miR-26a expression in humans and in mouse models of diabetic nephropathy. RESULTS: miR-26a, which was downregulated by TGF-ß1, was expressed in glomerular cells including podocytes and in tubules by in situ hybridisation. Glomerular miR-26a expression was downregulated by 70% in streptozotocin-induced diabetic mice. Transfection of miR-26a mimics in cultured human podocytes decreased the CTGF protein level by 50%, and directly inhibited CTGF expression in podocytes, as demonstrated by a reporter assay with the 3'-untranslated region of the CTGF gene. This effect was abolished by a mutant plasmid. miR-26a mimics also inhibited TGF-ß1-induced collagen expression, SMAD-binding activity and expression of its host genes CTDSP2 and CTDSPL. Knockdown of CTDSP2 and CTDSPL increased collagen expression in TGF-ß-stimulated podocytes, suggesting that host genes also regulate TGF-ß/SMAD signalling. Finally, we observed a positive correlation between microdissected glomerular miR-26a expression levels and estimated GFR in patients with diabetic nephropathy. CONCLUSIONS/INTERPRETATION: The downregulation of miR-26a is involved in the progression of diabetic nephropathy both in humans and in mice through enhanced TGF-ß/CTGF signalling.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , MicroRNAs/metabolismo , Podócitos/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Biópsia , Diabetes Mellitus Experimental , Progressão da Doença , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Microdissecção , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Smad/metabolismo , Estreptozocina , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA