Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Toxicol ; 94(3): 803-812, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047979

RESUMO

The long-lasting consequence of a new iodine thyroid blocking strategy (ITB) to be used in case of nuclear accident is evaluated in male Wistar rats using a metabolomics approach applied 30 days after ITB completion. The design used 1 mg/kg/day of KI over 8 days. Thyroid hormones remained unchanged, but there was a metabolic shift measured mainly in thyroid then in plasma and urine. In the thyroid, tyrosine metabolism associated to catecholamine metabolism was more clearly impacted than thyroid hormones pathway. It was accompanied by a peripheral metabolic shift including metabolic regulators, branched-chain amino acids, oxidant stress and inflammation-associated response. Our results suggested that iodide intake can impact gut microbiota metabolism, which was related to host metabolic regulations including in the thyroid. As there were no clear clinical signs of dysfunction or toxicity, we concluded that the measured metabolomics response to the new ITB strategy, especially in thyroid, is unlikely to reveal a pathological condition but a shift towards a new adaptive homeostatic state, called 'allostatic regulation'. The question now is whether or not the shift is permanent and if so at what cost for long-term health. We anticipate our data as a start point for further regulatory toxicity studies.


Assuntos
Iodeto de Potássio/metabolismo , Animais , Masculino , Metabolômica , Iodeto de Potássio/administração & dosagem , Ratos , Ratos Wistar , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
2.
J Toxicol Environ Health A ; 82(10): 603-615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179882

RESUMO

Preparedness for nuclear accident responsiveness includes interventions to protect pregnancies against prolonged exposure to radioactive iodine. The aim of this study was to investigate a new design consisting of repeated administration of potassium iodide (KI, 1 mg/kg) for 8 days in late pregnancy gestational day 9-16 (GD9-GD16) in rats. The later-life effects of this early-life iodine thyroid blocking (ITB) strategy were assessed in offspring two months afterbirth. Functional behavioral tests including forced swimming test (FST) and rotarod test (RRT) in rats of both genders showed lower FST performance in KI-treated females and lower RRT performance in KI-treated male pups. This performance decline was associated with metabolic disruptions in cortex involving amino acid metabolism, tyrosine metabolism, as well as docosahexaenoic acid (DHA) lipids and signaling lipids in males and females. Beyond these behavior-associated metabolic changes, a portion of the captured metabolome (17-25%) and lipidome (3.7-7.35%) remained sensitive to in utero KI prophylactic treatment in both cortex and plasma of post-weaning rats, with some gender-related variance. Only part of these disruptions was attributed to lower levels of TSH and T4 (males only). The KI-induced metabolic shifts involved a broad spectrum of functions encompassing metabolic and cell homeostasis and cell signaling functions. Irrespective Regardless of gender and tissues, the predominant effects of KI affected neurotransmitters, amino acid metabolism, and omega-3 DHA metabolism. Taken together, data demonstrated that repeated daily KI administration at 1 mg/kg/day for 8 days during late pregnancy failed to protect the mother-fetus against nuclear accident radiation. Abbreviations: CV-ANOVA: Cross-validation analysis of variance; DHA: Docosahexaenoic acid; FST: Forced swimming test; FT3: plasma free triiodothyronine; FT4: plasma free thyroxine; GD: Gestational day; ITB: Iodine thyroid blocking; KI: potassium iodide; LC/MS: Liquid chromatography coupled with mass spectrometry; MTBE: Methyl tert-butyl ether; m/z: mass-to-charge ratio; PLS-DA: Partial least squares-discriminant analysis; PRIODAC: Repeated stable iodide prophylaxis in accidental radioactive releases; RRT: Rotarod test; TSH: Thyroid-stimulating hormone; VIP: Variable importance in projection.


Assuntos
Lipidômica/métodos , Metabolômica/métodos , Iodeto de Potássio/efeitos adversos , Iodeto de Potássio/uso terapêutico , Exposição à Radiação/prevenção & controle , Radioisótopos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Feminino , Masculino , Modelos Animais , Gravidez , Liberação Nociva de Radioativos , Ratos , Ratos Wistar
3.
Eur Thyroid J ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241789

RESUMO

BACKGROUND: Intake of potassium iodide (KI) reduces the accumulation of radioactive iodine in the thyroid gland in the event of possible contamination by radioactive iodine released from a nuclear facility. The WHO has stated the need for research for optimal timing, appropriate dosing regimen and safety for repetitive iodine thyroid blocking (ITB). The French PRIODAC project, addressed all these issues, involving prolonged or repeated releases of radioactive iodine. Preclinical studies established an effective dose through pharmacokinetic modeling, demonstrating the safety of repetitive KI treatment without toxicity. SUMMARY: Recent preclinical studies have determined an optimal effective dose for repetitive administration, associated with pharmacokinetic modelling. The results show the safety and absence of toxicity of repetitive treatment with KI. Good laboratory practice level preclinical studies corresponding to individuals > 12 years have shown a safety margin established between animal doses without toxic effect. After approval from the French health authorities, the market authorization of the 2 tablets of KI-65mg/day was defined with a new dosing scheme of a daily repetitive intake of the treatment up to 7 days unless otherwise instructed by the competent authorities for all categories of population except pregnant women, and children under the age of 12 years. CONCLUSIONS: This new marketed authorization resulting from scientific-based evidence obtained as part of the PRIODAC project may serve as an example to further harmonize the application of KI for repetitive ITB in situations of prolonged radioactive release at the European and International levels, under the umbrella of the WHO.

4.
Sci Rep ; 10(1): 10839, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616734

RESUMO

A single administration of an iodine thyroid blocking agent is usually sufficient to protect thyroid from radioactive iodine and prevent thyroid cancer. Repeated administration of stable iodine (rKI) may be necessary during prolonged or repeated exposure to radioactive iodine. We previously showed that rKI for eight days offers protection without toxic effects in adult rats. However, the effect of rKI administration in the developing foetus is unknown, especially on brain development, although a correlation between impaired maternal thyroid status and a decrease in intelligence quotient of the progeny has been observed. This study revealed distinct gene expression profiles between the progeny of rats receiving either rKI or saline during pregnancy. To understand the implication of these differentially expressed (DE) genes, a systems biology approach was used to construct networks for each organ using three different techniques: Bayesian statistics, sPLS-DA and manual construction of a Process Descriptive (PD) network. The PD network showed DE genes from both organs participating in the same cellular processes that affect mitophagy and neuronal outgrowth. This work may help to evaluate the doctrine for using rKI in case of repetitive or prolonged exposure to radioactive particles upon nuclear accidents.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Biologia de Sistemas/métodos , Glândula Tireoide/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Gravidez , Ratos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia
5.
Biochem Biophys Rep ; 24: 100816, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024842

RESUMO

BACKGROUND: To date, paediatric thyroid cancer has been the most severe health consequence of the Chernobyl accident, caused by radioactive iodine (131I) aerosol's dispersion. WHO recommends a single dose of potassium iodide (KI) to reduce this risk. Following the Fukushima accident, it became obvious that repetitive doses of KI may be necessary due to multiple exposures to 131I. Knowledge about the effects of repeated ITB (Iodine Thyroid Blocking) is scarce and controversial. KI may affect the thyroid hormones synthesis; which is crucial for the cardiovascular function. Furthermore, myocardial and vascular endothelial tissues are sensitizes to subtle changes at the concentration of circulating pituitary and/or thyroid hormones. OBJECTIVE: In this preclinical study, we aimed to assess the effects of repeated ITB in elderly male rats. METHODS: Twelve months old male Wistar rats were subjected to either KI or saline solution for eight days. Analyses were performed 24 h and 30 days after the treatment discontinuation. FINDINGS: We reported a significant increase (18%) in some urinary parameters related to renal function, a subtle decrease of plasma TSH level, a significant increase (379%) in renin and a significant decrease (50%) in aldosterone upon KI administration. At the molecular level, the expression of thyroid and cardiovascular genes was significantly affected by the treatment. However, in our experimental settlement, animal heart rate was not significantly affected thirty days after KI discontinuation. ECG patterns did not change after administration of KI, and arrhythmia was not observed in these conditions despite the PR-intervals decreased significantly. Cardiovascular physiology was preserved. CONCLUSION: Our results indicate that repeated ITB in elderly rats is characterized by molecular modifications of cardiovascular key actors, particularly the Renin-angiotensin-aldosterone axis with a preserved physiological homeostasis. This new scientific evidence may be useful for the maturation of ITB guidelines especially for elderly sub-population.

6.
Biochimie ; 162: 208-215, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071356

RESUMO

Our group showed that repetitive dose of potassium iodide (KI) for eight days offers an efficient protection for exposure to repeated radioactive emissions without adverse effects on adult rats. However, differential expression of genes implicated in Wolff-Chaikoff effect was observed. To understand the Wolff-Chaikoff regulation and its molecular constituents during repetitive administration of KI, a biochemical reaction network was constructed as a "geographical" map of the thyrocyte depicting iodide and thyroid hormone synthesis. Path analysis of the network has been performed to investigate the presence of a regulatory circuit of the node iodide to the node "nis transcription". NIS is responsible for the uptake of KI and plays an important role in the Wolff-Chaikoff effect. The map is a source for the most updated information about iodide and thyroid hormone metabolism. Based on this map, we propose a hypothesis that shows a putative mechanism behind NIS regulation and KI uptake.


Assuntos
Iodeto de Potássio/administração & dosagem , Lesões por Radiação/prevenção & controle , Simportadores/metabolismo , Biologia de Sistemas/métodos , Células Epiteliais da Tireoide/metabolismo , Animais , Transporte Biológico , Iodeto de Potássio/farmacocinética , Iodeto de Potássio/farmacologia , Ratos , Células Epiteliais da Tireoide/citologia , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
7.
Neuroscience ; 406: 606-616, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797025

RESUMO

Protracted radioiodine release may require repeated intake of potassium iodide (KI) to protect thyroid gland. It is well established that iodine excess inhibits transiently the thyroid function. As developing fetus depends on maternal thyroid hormones (TH) supply, more knowledge is needed about the plausible effects that repeated KI intake can cause in this sensitive population, especially that even subtle variation of maternal thyroid function may have persistent consequences on progeny brain processing. The aim of this study is to assess the consequences of repeated intake of KI during pregnancy on the progeny's thyroid function and brain development. To do so pregnant Wistar rats received KI over eight days, and then thirty days after the weaning, male progeny was subjected to behavior test. Pituitary and thyroid hormones level, anti-thyroid antibodies level, organs morphology, gene expression and global DNA methylation were assessed. Thirty days after the weaning, KI-exposed male progeny showed an uncommon hormonal status, characterized by a decrease of both thyroid-stimulating hormone (-28%) and free thyroxine (-7%) levels. Motor coordination was altered in KI-exposed male progeny. At the cerebellar level, we observed a decrease of mRNA expression of DCX (-42%) and RC3 (-85%); on the other hand, at the cortical level, mRNA expression of MBP (+71%), MOBP (+90%) and Kcna1 (+42%) was increased. To conclude, repeated KI prophylaxis is not adequate during pregnancy since it led to long-term irreversible neurotoxicity in the male progeny.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Hipófise/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Animais , Encéfalo/metabolismo , Proteína Duplacortina , Feminino , Radioisótopos do Iodo , Gravidez , Ratos Wistar , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo
8.
Mol Cell Endocrinol ; 474: 119-126, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29496566

RESUMO

BACKGROUND: A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. METHODS: Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. RESULTS: hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). CONCLUSION: we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Iodeto de Potássio/administração & dosagem , Iodeto de Potássio/farmacologia , Hormônios Tireóideos/biossíntese , Animais , Transporte Biológico/efeitos dos fármacos , Iodo/urina , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue
9.
Radiat Prot Dosimetry ; 182(1): 67-79, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169846

RESUMO

Single dose of potassium iodide (KI) is recommended to prevent the risk of thyroid cancer during nuclear accidents. However in the case of repeated/protracted radioiodine release, a unique dose of KI may not protect efficiently the thyroid against the risk of further developing a radiation-induced cancer. The new WHO guidelines for the use in planning for and responding to radiological and nuclear emergencies identify the need of more data on this subject as one of the four research priorities. The aims of the PRIODAC project are (1) to assess the associated side effects of repeated intakes of KI, (2) to better understand the molecular mechanisms regulating the metabolism of iodine, (3) to revise the regulatory French marketing authorization of 65-mg KI tablets and (4) to develop new recommendations related to the administration of KI toward a better international harmonization. A review of the literature and the preliminary data are presented here.


Assuntos
Radioisótopos do Iodo/efeitos adversos , Neoplasias Induzidas por Radiação/prevenção & controle , Iodeto de Potássio/uso terapêutico , Lesões por Radiação/prevenção & controle , Liberação Nociva de Radioativos , Neoplasias da Glândula Tireoide/prevenção & controle , Relação Dose-Resposta à Radiação , Humanos , Neoplasias Induzidas por Radiação/etiologia , Lesões por Radiação/etiologia , Neoplasias da Glândula Tireoide/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA