Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(6): e1009681, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161396

RESUMO

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes diverse human infections including chronic airway infection in patients with cystic fibrosis (CF). Comparing the genomes of CF and non-CF PA isolates has great potential to identify the genetic basis of pathogenicity. To gain a deeper understanding of PA adaptation in CF airways, we performed a genome-wide association study (GWAS) on 1,001 PA genomes. Genetic variations identified among CF isolates were categorized into (i) alterations in protein-coding regions, either large- or small-scale, and (ii) polymorphic variation in intergenic regions. We introduced each CF-associated genetic alteration into the genome of PAO1, a prototype PA strain, and validated the outcomes experimentally. Loci readily mutated among CF isolates included genes encoding a probable sulfatase, a probable TonB-dependent receptor (PA2332~PA2336), L-cystine transporter (YecS, PA0313), and a probable transcriptional regulator (PA5438). A promoter region of a heme/hemoglobin uptake outer membrane receptor (PhuR, PA4710) was also different between the CF and non-CF isolate groups. Our analysis highlights ways in which the PA genome evolves to survive and persist within the context of chronic CF infection.


Assuntos
Fibrose Cística/microbiologia , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos
2.
J Biol Chem ; 296: 100576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757766

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen whose virulence is dependent on quorum sensing (QS). DksA1, an RNA polymerase-binding transcriptional regulator, plays a role in determining a number of phenotypes, including QS-mediated virulence. We therefore envisioned that DksA1 inhibitors may help to control P. aeruginosa infection. Here, we screened a library of 6970 chemical compounds and identified two compounds (henceforth termed Dkstatins) that specifically suppressed DksA1 activity. Treatment with these two compounds also substantially decreased the production of elastase and pyocyanin, dominant virulence determinants of P. aeruginosa, and protected murine hosts from lethal infection from a prototype strain of P. aeruginosa, PAO1. The Dkstatins also suppressed production of homoserine lactone (HSL)-based autoinducers that activate P. aeruginosa QS. The level of 3-oxo-C12-HSL produced by Dkstatin-treated wildtype PAO1 closely resembled that of the ΔdksA1 mutant. RNA-Seq analysis showed that transcription levels of QS- and virulence-associated genes were markedly reduced in Dkstatin-treated PAO1 cells, indicating that Dkstatin-mediated suppression occurs at the transcriptional level. Importantly, Dkstatins increased the antibiotic susceptibilities of PAO1, particularly to protein synthesis inhibitors, such as tobramycin and tetracycline. Co-immunoprecipitation assays demonstrated that these Dkstatins interfered with DksA1 binding to the ß subunit of RNA polymerase, pointing to a potential mechanism of action. Collectively, our results illustrate that inhibition of P. aeruginosa QS may be achieved via DksA1 inhibitors and that Dkstatins may serve as potential lead compounds to control infection.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sequência Conservada , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Camundongos , Mutação , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/efeitos dos fármacos
3.
Am J Respir Cell Mol Biol ; 62(1): 95-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31318581

RESUMO

IL-17 family cytokines are directly involved in host immune responses and the critical mediators for host defense against infection or inflammation. IL-17C is highly expressed in respiratory epithelium and is induced after acute bacterial lung infection. However, the definite function of IL-17C induced by Pseudomonas aeruginosa (PAO1 strain) is not fully understood, and our study was designed to demonstrate IL-17C-induced immune response against PAO1 infection in nasal epithelium. Passage-2 normal human nasal epithelial (NHNE) cells were infected with PAO1 and the relationship between IL-17C-related immune responses and the iron absorption of PAO1, depending on inoculation of recombinant human IL-17C (rhIL-17C), was assessed by measuring the siderophore activity of PAO1. Microarray data showed that IL-17C expression increased 34.7 times at 8 hours postinfection (hpi) in NHNE cells, and IL-17C mRNA levels increased until 48 hpi. The PAO1 colonies significantly increased from 8 hpi in NHNE cells, and siderophore activity of PAO1 was enhanced in the supernatants of PAO1-infected NHNE cells. Interestingly, PAO1 colonies were reduced in PAO1-infected NHNE cells treated with rhIL-17C, and supernatants from NHNE cells treated with rhIL-17C also exhibited decreased PAO1 colonies. We found that the siderophore activity of PAO1 was significantly reduced in the supernatants of NHNE cells treated with rhIL-17C where LCN2 expression was highly elevated. Our findings indicate that IL-17C mediates an antibacterial effect against PAO1 by inhibiting siderophore activity in nasal epithelium. We propose that IL-17C might be an efficient mediator to suppress PAO1 infection through disturbing iron absorption of PAO1 in nasal epithelium.


Assuntos
Interleucina-17/imunologia , Mucosa Nasal/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Linhagem Celular , Células Epiteliais/imunologia , Humanos , RNA Mensageiro/imunologia , Sideróforos/imunologia
4.
J Biol Chem ; 293(15): 5679-5694, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475943

RESUMO

The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vibrio cholerae/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Periplásmicas de Ligação/biossíntese , Proteínas Periplásmicas de Ligação/genética , Vibrio cholerae/genética
5.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842537

RESUMO

Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis, including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms.IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/química , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Mutação , Polissacarídeos Bacterianos/química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
6.
J Biol Chem ; 290(21): 13178-90, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25882848

RESUMO

When V. cholerae encounters nutritional stress, it activates (p)ppGpp-mediated stringent response. The genes relA and relV are involved in the production of (p)ppGpp, whereas the spoT gene encodes an enzyme that hydrolyzes it. Herein, we show that the bacterial capability to produce (p)ppGpp plays an essential role in glucose metabolism. The V. cholerae mutants defective in (p)ppGpp production (i.e. ΔrelAΔrelV and ΔrelAΔrelVΔspoT mutants) lost their viability because of uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ΔrelAΔspoT mutant, a (p)ppGpp overproducer strain, exhibited better growth in the presence of the same glucose concentration. An RNA sequencing analysis demonstrated that transcriptions of genes consisting of an operon for acetoin biosynthesis were markedly elevated in N16961, a seventh pandemic O1 strain, but not in its (p)ppGpp(0) mutant during glucose-stimulated growth. Transposon insertion in acetoin biosynthesis gene cluster resulted in glucose-induced loss of viability of the ΔrelAΔspoT mutant, further suggesting the crucial role of acetoin production in balanced growth under glucose-rich environments. Additional deletion of the aphA gene, encoding a negative regulator for acetoin production, failed to rescue the (p)ppGpp(0) mutant from the defective glucose-mediated growth, suggesting that (p)ppGpp-mediated acetoin production occurs independent of the presence of AphA. Overall, our results reveal that (p)ppGpp, in addition to its well known role as a stringent response mediator, positively regulates acetoin production that contributes to the successful glucose metabolism and consequently the proliferation of V. cholerae cells under a glucose-rich environment, a condition that may mimic the human intestine.


Assuntos
Acetoína/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Guanosina Pentafosfato/farmacologia , Ligases/metabolismo , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Ácidos/metabolismo , Sobrevivência Celular , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligases/genética , Mutação/genética , RNA Bacteriano/genética , Vibrio cholerae/genética
7.
J Biol Chem ; 289(19): 13232-42, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648517

RESUMO

As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.


Assuntos
Toxina da Cólera/biossíntese , Metilaminas/metabolismo , Vibrio cholerae/metabolismo , Anaerobiose/fisiologia , Toxina da Cólera/genética , Deleção de Genes , Vibrio cholerae/genética
8.
Antimicrob Agents Chemother ; 58(12): 7205-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246397

RESUMO

Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 µM DTPA. Supplementation with Zn(2+) or Mn(2+) ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Ácido Pentético/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Administração Intranasal , Animais , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cátions Bivalentes , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Inibidores Enzimáticos/metabolismo , Humanos , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Masculino , Manganês/metabolismo , Manganês/farmacologia , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Camundongos , Ácido Pentético/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Virulência , Zinco/metabolismo , Zinco/farmacologia
9.
Microbiol Spectr ; 12(1): e0125823, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018985

RESUMO

IMPORTANCE: In this study, we aimed to design a novel and effective bacteriophage cocktail that can target both wild-type bacteria and phage-resistant mutants. To achieve this goal, we isolated four phages (U2874, phi_KPN_H2, phi_KPN_S3, and phi_KPN_HS3) that recognized different bacterial surface molecules using phage-resistant bacteria. We constructed three phage cocktails and tested their phage resistance-suppressing ability against multidrug-resistant Klebsiella pneumoniae. We argue that the phage cocktail that induces resensitization of phage susceptibility exhibited superior phage resistance-suppressing ability. Moreover, we observed trade-off effects that manifested progressively in phage-resistant bacteria. We hypothesize that such trade-off effects can augment therapeutic efficacy. We also recommend collating phage host range data against phage-resistant mutants in addition to wild-type bacteria when establishing phage banks to improve the efficiency of phage therapy. Our study underscores the importance of phage host range data in constructing effective phage cocktails for clinical use.


Assuntos
Bacteriófagos , Terapia por Fagos , Bacteriófagos/genética , Klebsiella pneumoniae , Especificidade de Hospedeiro , Antibacterianos/farmacologia
10.
J Biol Chem ; 287(47): 39742-52, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019319

RESUMO

Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Toxina da Cólera/metabolismo , Cólera/enzimologia , Periplasma/metabolismo , Vibrio cholerae/enzimologia , Fatores de Virulência/metabolismo , Substituição de Aminoácidos , Anaerobiose/efeitos dos fármacos , Anaerobiose/genética , Animais , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Cólera/genética , Toxina da Cólera/genética , Metilaminas/farmacologia , Camundongos , Mutação de Sentido Incorreto , Oxidantes/farmacologia , Periplasma/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Fatores de Virulência/genética
11.
Biochem Biophys Res Commun ; 436(3): 388-93, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23747730

RESUMO

As a model host, the nematode Caenorhabditis elegans has been used for studying unknown pathogen-host interactions and identifying novel virulence factors in bacterial pathogens. Among the bacterial pathogens that can induce death of C. elegans is enterohemorrhagic Escherichia coli (EHEC) O157:H7, a major serotype of EHEC that causes hemorrhagic colitis and hemolytic uremic syndrome in humans and animals. However, it is unknown which EHEC O157:H7 factors are required for nematode death. In this study, bacterial ability to kill C. elegans was tested for several EHEC O157:H7 wild-type and mutant strains missing one virulence-associated factor, including Shiga toxins, enterohemolysin, pO157 (a large virulence plasmid in EHEC O157:H7), Type 3 secretion system, LuxS, and lipopolysaccharide (LPS) O-side chains. Our results demonstrate that only mutants lacking either pO157 or LPS O-side chains cause full attenuation in killing C. elegans. The LPS O-side chain-defective ΔperA mutant strain was not able to colonize in the intestine even at 24h post-feeding with C. elegans, while the wild-type strain began to accumulate and colonize in the intestine as early as 3h post-feeding. A simple complementation of the mutant strain with the plasmid carrying the intact perA gene in trans completely restored the production of LPS O-side chains, as well as the ability to kill C. elegans. Our results show that pO157 and PerA are required for EHEC O157:H7 to kill C. elegans.


Assuntos
Caenorhabditis elegans/microbiologia , Escherichia coli O157/patogenicidade , Antígenos O/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Modelos Animais de Doenças , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Teste de Complementação Genética , Proteínas Hemolisinas/metabolismo , Intestinos/microbiologia , Antígenos O/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Fatores de Virulência/genética
12.
Appl Environ Microbiol ; 79(12): 3829-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584783

RESUMO

Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host Escherichia coli DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus Bacteroides. Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of Bacteroides spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. E. coli strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling Bacteroides species) that enhance the ability of the bacteria to colonize the murine bowel.


Assuntos
Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Intestino Grosso/microbiologia , Metagenoma/genética , Animais , Aderência Bacteriana/fisiologia , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Códon/genética , Primers do DNA/genética , Escherichia coli/fisiologia , Biblioteca Gênica , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Óperon/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Infect Immun ; 80(5): 1639-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22371376

RESUMO

Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO(3)(-)) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B(12) to be a molecule that can reinstate defective anaerobic growth of P. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B(12), an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B(12), the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B(12), further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P. aeruginosa and illustrates the ability of vitamin B(12) to modulate the biofilm-forming capacity of P. aeruginosa under such condition.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Vitamina B 12/metabolismo , Complexo Vitamínico B/farmacologia , Aerobiose , Anaerobiose/efeitos dos fármacos , DNA Bacteriano/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Consumo de Oxigênio , Análise Serial de Proteínas , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
14.
NPJ Biofilms Microbiomes ; 8(1): 26, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418111

RESUMO

Our recent study presented that human nasal commensal Staphylococcus epidermidis could potentiate antiviral immunity in the nasal mucosa through interferon-related innate responses. Here, we found that human nasal commensal S. epidermidis promoted protease-protease inhibitor balance in favor of the host and prevented influenza A virus (IAV) replication in the nasal mucosa and lungs. A relatively higher induction of Serpine1 exhibited in S. epidermidis-inoculated nasal epithelium and S. epidermidis-induced Serpine1 significantly decreased the expression of serine proteases. Furthermore, the transcription of urokinase plasminogen activator (uPA) and Serpine1 was biologically relevant in S. epidermidis-inoculated nasal epithelium, and the induction of uPA might be related to the sequential increase of Serpine1 in human nasal epithelium. Our findings reveal that human nasal commensal S. epidermidis manipulates the cellular environment lacking serine proteases in the nasal epithelium through Serpine1 induction and disturbs IAV spread to the lungs at the level of the nasal mucosa.


Assuntos
Vírus da Influenza A , Mucosa Nasal , Staphylococcus epidermidis , Internalização do Vírus , Humanos , Vírus da Influenza A/fisiologia , Interferons , Mucosa Nasal/microbiologia , Mucosa Nasal/virologia , Serina Proteases
15.
Infect Immun ; 79(7): 2792-800, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21555402

RESUMO

Pseudomonas aeruginosa, an opportunistic pathogen of clinical importance, causes chronic airway infections in patients with cystic fibrosis (CF). Current literature suggests that pockets with reduced oxygen tension exist in the CF airway mucus. However, virulence features of this opportunistic pathogen under such conditions are largely unknown. Cell-free supernatant of the standard laboratory P. aeruginosa strain PAO1 obtained from anaerobic culture, but not aerobic culture, failed to kill A549 human airway epithelial cells. Further investigation revealed that this reduced cytotoxicity upon anaerobiosis was due to the suppressed secretion of elastase, a virulence factor controlled by P. aeruginosa quorum sensing (QS). Both a lacZ-reporter fusion assay and quantitative real-time PCR (RT-PCR) analysis demonstrated that transcription of the elastase-encoding lasB gene was substantially decreased during anaerobic growth compared with aerobic growth. Moreover, transcription of other genes controlled by the LasI/R QS system, such as rhlR, vqsR, mvfR, and rsaL, was also repressed under the same anaerobic growth conditions. Importantly, synthesis of 3-oxo-C(12)-HSL (PAI-1), an autoinducer molecule that mediates induction of the LasI/R QS system, was >22-fold decreased during anaerobic growth while C(4)-HSL (PAI-2), which mediates RhlI/R QS, was nondetectable under the same growth conditions. Transcription of the lasB gene was restored by exogenous supplementation with autoinducers, with PAI-2 more effective than PAI-1 or Pseudomonas quinolone signal (PQS) at restoring transcription of the lasB gene. Together, these results suggest that anaerobiosis deprives P. aeruginosa of the ability to regulate its virulence via QS and this misregulation attenuates the pathogenic potential of this important pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum , Anaerobiose , Proteínas de Bactérias/genética , Western Blotting , Linhagem Celular Tumoral , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Humanos , Metaloendopeptidases/genética , Elastase Pancreática/genética , Elastase Pancreática/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/farmacologia , Reação em Cadeia da Polimerase , Infecções por Pseudomonas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Quinolonas/metabolismo , Quinolonas/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Microbiol Spectr ; 9(1): e0007421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34190593

RESUMO

Obesity is a major public health problem related to various chronic health conditions. Lactobacillus species has been reported in obese individuals; however, its role is unknown. We compared the abundance and composition of Lactobacillus species by analyzing feces from 64 healthy control subjects and 88 obese subjects. We isolated one Lactobacillus strain from the feces of a subject with obesity and further analyzed its genetic and molecular features. We found that an increased abundance and higher prevalence of Lactobacillus sakei distinguished the fecal microbiota of the obese group from that of healthy subjects and that it was related to the increased levels of reactive oxygen species (ROS) induced by higher fat intake. The L. sakei ob4.1 strain, isolated from the feces of a subject with obesity, showed high catalase activity, which was regulated by oxidative stress at the gene transcription level. L. sakei ob4.1 maintained colon epithelial cell adhesion ability under ROS stimulation, and treatment with saturated fatty acid increased colon epithelial ROS levels in a dose-dependent manner; however, L. sakei ob4.1 did not change the level of fat-induced colon epithelial ROS. Exposing mice to a high-fat diet revealed that high-fat-diet-induced colon ROS was associated with the increased colonization of L. sakei ob4.1 through catalase activity. Four-week supplementation with this strain in mice fed a high-fat diet did not change their body weights or ROS levels. A high-fat diet induces changes in the colon environment by increasing ROS levels, which provides a colonization benefit to an L. sakei strain with high catalase activity. IMPORTANCELactobacillus provides many health benefits; its various species are widely used as probiotics. However, an increased abundance of Lactobacillus has been reported in obesity, and the role of Lactobacillus strains in obesity remains unknown. We found a high abundance of the Lactobacillus sakei species in a group of obese subjects and examined its relationship with a high-fat diet and reactive oxygen species (ROS) in the feces. To find the underlying mechanism, we analyzed and characterized an L. sakei strain isolated from a severely obese individual. We found that higher gut oxidative stress could link high-fat-diet-induced obesity and L. sakei. This translational research identifies the roles of the host gut environment in the colonization and survival of L. sakei.


Assuntos
Latilactobacillus sakei/crescimento & desenvolvimento , Obesidade/microbiologia , Estresse Oxidativo , Animais , Colo/metabolismo , Colo/microbiologia , Dieta Hiperlipídica/efeitos adversos , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Latilactobacillus sakei/genética , Latilactobacillus sakei/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Appl Environ Microbiol ; 76(14): 4760-4, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20525869

RESUMO

Fifteen nonrepetitive ampicillin-resistant Salmonella spp. were identified among 91 Salmonella sp. isolates during nationwide surveillance of Salmonella in waste from 131 chicken farms during 2006 and 2007. Additional phenotyping and genetic characterization of these 15 isolates by using indicator cephalosporins demonstrated that resistance to ampicillin and reduced susceptibility to cefoxitin in three isolates was caused by TEM-1 and DHA-1 beta-lactamases. Plasmid profiling and Southern blot analysis of these three DHA-1-positive Salmonella serovar Indiana isolates and previously reported unrelated clinical isolates of DHA-1-positive Salmonella serovar Montevideo, Klebsiella pneumoniae, and Escherichia coli from humans and swine indicated the involvement of the large-size plasmid. Restriction enzyme digestion of the plasmids from the transconjugants showed variable restriction patterns except for the two Salmonella serovar Indiana isolates identified in this study. To the best of our knowledge, this is the first report of the presence of the DHA-1 gene among Salmonella spp. of animal origin.


Assuntos
Criação de Animais Domésticos , Resíduos Industriais , Salmonella/efeitos dos fármacos , Resistência beta-Lactâmica , beta-Lactamases/genética , Animais , Southern Blotting , Galinhas , DNA Bacteriano/análise , DNA Bacteriano/genética , Deleção de Genes , Genótipo , Testes de Sensibilidade Microbiana , Plasmídeos/análise , República da Coreia , Mapeamento por Restrição , Salmonella/isolamento & purificação
18.
J Food Prot ; 72(2): 325-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19350976

RESUMO

The inhibitory effects of green tea polyphenol epigallocatechin gallate (EGCG) on virulence phenotypes and gene expression regulated by quorum sensing (QS) in Escherichia coli O157:H7 were demonstrated at concentrations of 1 to 100 microg/ml, which are lower than the MIC (539 +/- 22 microg/ml). At 25 microg/ml, the growth rate was not affected, but autoinducer 2 concentration, biofilm formation, and swarm motility decreased to 13.2, 11.8, and 50%, respectively. Survival at 5 days of nematodes (Caenorhabditis elegans) that were fed the pathogen without and with EGCG were 47.1 and 76%, respectively. Real-time PCR data indicated decreased transcriptional level in many quorum sensing-regulated virulence genes at 25 microg/ml. Our results suggest that EGCG at concentrations below itsMIC has significant antipathogenic effects against E. coli O157:H7.


Assuntos
Caenorhabditis elegans/microbiologia , Catequina/análogos & derivados , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/patogenicidade , Regulação Bacteriana da Expressão Gênica , Chá/química , Animais , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Catequina/farmacologia , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Proteínas de Escherichia coli/análise , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Percepção de Quorum , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Virulência/genética
19.
Microbiome ; 7(1): 80, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146794

RESUMO

BACKGROUND: Staphylococcus epidermidis is one of the most abundant colonizers of healthy human mucosa including that in the respiratory tract. As the respiratory microbiome has been linked to host immune responses, this study sought to determine the role of nasal mucosa-associated S. epidermidis in innate immune responses against the influenza A virus (IAV). S. epidermidis strains were isolated from nasal mucus samples of healthy individuals. The effects of these mucosa-derived commensal strains on interferon (IFN)-dependent innate immunity and IAV infection dynamics were tested in vitro using normal human nasal epithelial (NHNE) cells and human turbinate mucosa. The effects of S. epidermidis on antiviral immunity were also tested in vivo using an acute IAV infection mouse model. RESULTS: Exposure of NHNE cells to nasal mucosa-derived S. epidermidis increased IFN-λ mRNA and secreted protein levels in the absence of viral stimulation. In the context of IAV infection, NHNE exposure to S. epidermidis prevented an increase in the viral burden, as revealed by IAV PA mRNA abundance, IAV nucleoprotein levels, and viral titers. S. epidermidis also enhanced transcription of IFN-stimulated genes independently of Toll-like receptor 2 and further induced IFN-λ production in IAV-infected cells by promoting phosphorylation of interferon regulatory factor 7. In a murine infection model, S. epidermidis prevented the spread of IAV to the lungs by stimulating IFN-λ innate immunity and suppressing IAV replication in the nasal mucosa. CONCLUSION: The human nasal commensal S. epidermidis mediates front-line antiviral protection against IAV infection through modulation of IFN-λ-dependent innate immune mechanisms in the nasal mucosa, thereby demonstrating the role of host-bacterial commensalism in shaping human antiviral responses.


Assuntos
Influenza Humana/imunologia , Interferons/imunologia , Mucosa Nasal/imunologia , Nariz/microbiologia , Staphylococcus epidermidis/imunologia , Simbiose , Adulto , Animais , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/microbiologia , Nariz/imunologia , Infecções por Orthomyxoviridae/imunologia
20.
Cell Host Microbe ; 25(4): 513-525.e6, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905438

RESUMO

In the inner ear, endolymph fluid surrounds the organ of Corti, which is important for auditory function; notably, even slight environmental changes mediated by trauma or infection can have significant consequences. However, it is unclear how the immune response is modulated in these tissues. Here, we report the local immune surveillance role of cleaved cochlin LCCL (Limulus factor C, Cochlin, and Lgl1) during Pseudomonas aeruginosa infection in the cochlea. Upon infection, the LCCL domain is cleaved from cochlin and secreted into the perilymph. This cleaved fragment sequesters infiltrating bacteria in the scala tympani and subsequently recruits resident immune cells to eliminate the bacteria. Importantly, hearing loss in a cochlin knockout mouse model is remedied by treatment with a cochlin LCCL peptide. These findings suggest cleaved cochlin LCCL constitutes a critical factor in innate immunity and auditory function and may be a potential therapeutic target to treat chronic otitis media-induced hearing loss.


Assuntos
Orelha Interna/imunologia , Orelha Interna/microbiologia , Proteínas da Matriz Extracelular/metabolismo , Imunidade Inata , Labirintite/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Aderência Bacteriana , Modelos Animais de Doenças , Labirintite/patologia , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA