Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14386-14390, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747544

RESUMO

A tetragermacyclobutane-1,3-diyl was prepared and structurally characterized via the reduction of chlorogermylene-coordinated germylgermylene with potassium graphite, which represents the first all-germanium analogue of cyclobutane-1,3-diyl. Single-crystal X-ray analysis of the tetragermacyclobutane-1,3-diyl disclosed that it adopts a planar-cis structure, which is different from those reported all-silicon cyclobutane-1,3-diyls. DFT calculations revealed that both the bulky substituents on the germanium atoms and the tethering of the amido groups are important for the planar cis-configuration of 5.

2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(4): 430-437, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202106

RESUMO

OBJECTIVE: To screen activators of 2,3-diphosphoglycerate (BPG) mutase (BPGM) from Chinese herb medicines, so as to improve the hypoxia tolerance of erythrocytes. METHODS: BPGM was used as the receptor and Chinese medicine ingredients database was used as the ligand in the study. After Lipinski rule of five screening, LibDock and CDOCKER docking were used for virtual screening. The effect of the screened compounds on the affinity of BPGM in erythrocytes was verified. Finally, the erythrocytes were incubated in vitro to establish the erythrocyte hypoxia model, and the effect of the compound on the activity of BPGM in the erythrocyte hypoxia model was verified. RESULTS: Ten compounds with highest binding affinity to BPGM were selected by LibDock and CDOCKER, and the cytoplasm protein was incubated with the ten compounds. Compared with blank control group, methyl rosmarinate group, dihydrocurcumin high dose group, octahydrocurcumin medium dose group and coniferyl ferulate high dose group were able to further activate the BPGM, significantly increase the levels of 2, 3-BPG in normal erythrocytes (all P<0.05); while the low dose of tetrahydrocurcumin, high dose and low dose of aurantiamide, hexahydrocurcumin and medium dose of N- (p-coumaroyl) serotonin had a tendency to increase the contents of 2,3-BPG in normal erythrocytes (all P>0.05). In the hypoxic red blood cells, the medium dose methyl rosmarinate, medium dose octahydrocurcumin, high dose hexahydrocurcumin and medium dose N-(p-coumaroyl) serotonin could significantly increase the contents of 2,3-BPG (all P<0.05). CONCLUSION: The methyl rosmarinate, octahydrocurcumin, hexahydrocurcumin and N-(p-coumaroyl) serotonin could activate BPGM and increase the contents of 2,3-BPG in hypoxic erythrocytes.


Assuntos
Bisfosfoglicerato Mutase , Medicina Tradicional Chinesa , Humanos , Bisfosfoglicerato Mutase/metabolismo , Serotonina , Hipóxia
3.
Bioorg Chem ; 115: 105232, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371373

RESUMO

The strategy "IEMAHC" (Induction of Endophyte Metabolism by Adding Host Components) was applied to the fermentation of the endophytic fungus Epicoccum sorghinum L28 from Myoporum bontioides by introducing guaiol, an ingredient of M. bontioides, into the cultivation medium, which resulted in the purification of nine new diphenyl ethers, epicoccethers A-I (1-9). Their structures were determined by overall spectroscopic analysis. HPLC-MS analysis revealed that compounds 5-7 were products generated by induction of guaiol. Compounds 6 and 7 are the first members containing an ester moiety formed by the natural long-chain fatty acid and the hydroxyl group in the phenylmethanol unit of the diphenyl ether class. The antifungal activities of compounds 1, 2, and 4-7 against Fusarium oxysporum were 1, 1, 2, 1, 2 and 4 times as high as those of the positive control triadimefon, respectively. Compounds 4 and 5 showed 1.6 times the antifungal activities of triadimefon towards Colletotrichum musae.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/química , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Éteres Fenílicos/química , Éteres Fenílicos/isolamento & purificação , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768735

RESUMO

Various factors such as ultraviolet rays can cause a continuous threat to our skin, resulting in inflammation or oxidation problems. Ferulic acid (FA), with certain antioxidant and anti-inflammatory properties, is widely used in many cosmetics, even used to treat various diseases in the clinic. In this study, the FA structural skeleton was used to search for FA derivatives. Then, molecular docking, the rule of five, and Veber rules were performed to virtually screen compounds that can bind to proteins with a good drug likeness. DPPH and ABTS were used to evaluate their antioxidant potency and an MTT assay was employed to investigate the toxicities of the compounds, while Griess Reaction System and ELISA were used to judge the concentration variations of NO and different inflammatory factors (TNF-α, IL-1ß, and IL-6). Western blotting featured nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression levels. The trend of the intracellular changes of reactive oxygen species (ROS) was detected by the DCFH-DA method and fluorescence staining. As a result, we found that the ferulic acid derivative S-52372 not only had certain scavenging effects on free radicals in biochemical experiments, but also prevented inflammation and oxidative stress in LPS-stimulated RAW264.7 cells in the cellular environment; intracellular ROS and inflammatory mediators, including iNOS, COX-2, TNF-α, and IL-6, were also suppressed. In a computer prediction, S-52372 owned better water solubility and lower toxicity than FA. This compound deserves further research to find an ideal FA derivative.


Assuntos
Anti-Inflamatórios/química , Ácidos Cumáricos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Simulação por Computador , Ácidos Cumáricos/química , Ciclo-Oxigenase 2/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630190

RESUMO

Opioid analgesics such as morphine have indispensable roles in analgesia. However, morphine use can elicit side effects such as respiratory depression and constipation. It has been reported that G protein-biased agonists as substitutes for classic opioid agonists can alleviate (or even eliminate) these side effects. The compounds PZM21 and TRV130 could be such alternatives. Nevertheless, there are controversies regarding the efficacy and G protein-biased ability of PZM21. To demonstrate a rationale for the reduced biasing agonism of PZM21 compared with that of TRV130 at the molecular level, we undertook a long-term molecular dynamics simulation of the µ-opioid receptor (MOR) upon the binding of three ligands: morphine, TRV130, and PZM21. We found that the delayed movement of the W2936.48 (Ballesteros-Weinstein numbering) side chain was a factor determining the dose-dependent agonism of PZM21. Differences in conformational changes of W3187.35, Y3267.43, and Y3367.53 in PZM21 and TRV130 explained the observed differences in bias between these ligands. The extent of water movements across the receptor channel was correlated with analgesic effects. Taken together, these data suggest that the observed differences in conformational changes of the studied MOR-ligand complexes point to the low-potency and lower bias effects of PZM21 compared with the other two ligands, and they lay the foundation for the development of G protein-biased agonists.


Assuntos
Receptores Opioides mu/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Ureia/análogos & derivados , Analgesia/métodos , Analgésicos Opioides/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Morfina/metabolismo , Morfina/farmacologia , Dor/induzido quimicamente , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Compostos de Espiro/metabolismo , Compostos de Espiro/farmacologia , Tiofenos/metabolismo , Ureia/química , Ureia/metabolismo , Ureia/farmacologia
6.
Molecules ; 26(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374386

RESUMO

The mesenchymal epithelial cell transforming factor c-Met, encoded by c-Met proto-oncogene and known as a high-affinity receptor for Hepatocyte Growth Factor (HGF), is one of the receptor tyrosine kinases (RTKs) members. The HGF/c-Met signaling pathway has close correlation with tumor growth, invasion and metastasis. Thus, c-Met kinase has emerged as a prominent therapeutic target for cancer drug discovery. Recently a series of novel 2-aminopyridine derivatives targeting c-Met kinase with high biological activity were reported. In this study, 3D quantitative structure-activity relationship (QSAR), molecular docking and molecular dynamics simulations (MD) were employed to research the binding modes of these inhibitors.The results show that both the atom-based and docking-based CoMFA (Q2 = 0.596, R2 = 0.950 in atom-based model and Q2 = 0.563, R2 = 0.985 in docking-based model) and CoMSIA (Q2 = 0.646, R2 = 0.931 in atom-based model and Q2 = 0.568, R2 = 0.983 in docking-based model) models own satisfactory performance with good reliabilities and powerful external predictabilities. Molecular docking study suggests that Tyr1230 and Arg1208 might be the key residues, and electrostatic and hydrogen bond interactions were shown to be vital to the activity, concordance with QSAR analysis. Then MD simulation was performed to further explore the binding mode of the most potent inhibitor. The obtained results provide important references for further rational design of c-Met Kinase type I inhibitors.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Desenho de Fármacos , Conformação Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/química , Relação Quantitativa Estrutura-Atividade
7.
J Cell Biochem ; 118(9): 2792-2801, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181296

RESUMO

The second-generation antiandrogen enzalutamide, targeting androgen receptor (AR), was approved to treat castration resistant prostate cancer (CRPC) in 2012. Its resistance was observed when it was in the clinical research stage. AR mutation is the main factor of enzalutamide resistance. AR F876L and F876L_T877A mutations were reported to switch enzalutamide from AR antagonist to agonist, but W741C cannot. There are various mutations in the ligand binding domain of AR LBD, such as L701H, W741L, H874Y, T877A, and M895T, if these mutations can lead to drug resistance problem or not is not known. In this work, molecular dynamics (MD) simulations and molecular mechanics Generalized Born (GB) surface area (MM-GBSA) calculations were employed to explore the interaction mechanisms between enzalutamide and wild-type (WT)/mutant ARs. The simulation results indicate that helix 12 (H12), which lies on the top of the AR LBD like a cover, plays a vital role for the function of enzalutamide. When C-ring of enzalutamide locates near to H12, the distance between enzalutamide and H12 is reduced, which prevents H12 from closing and distort the coactivator binding site, resulting in the inactivation of transcription. In this case, enzalutamide acts as an AR antagonist. However, when the C-ring of enzalutamide is near to helix H11 or the Loop 11-12, H12 tends to close to form a coactivator binding site to facilitate transcription, enzalutamide acts as an AR agonist. Moreover, per-residue free energy decomposition analysis indicates that M895 and I899 are key residues in the antagonist mechanism of enzalutamide. J. Cell. Biochem. 118: 2792-2801, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata , Receptores Androgênicos/química , Substituição de Aminoácidos , Benzamidas , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Nitrilas , Feniltioidantoína/química , Feniltioidantoína/uso terapêutico , Domínios Proteicos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
Drug Dev Ind Pharm ; 43(4): 558-573, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27935330

RESUMO

OBJECTIVE: This work aimed to develop an alternative sustained-release thermosensitive praziquantel-loaded nanoemulsion (PZQ-NE) hydrogel for better schistosomiasis treatment. SIGNIFICANCE: PZQ-NE-dispersed chitosan/glycerol 2-phosphate disodium/HPMC (NE/CS/ß-GP/HMPC) hydrogel was successfully prepared to improve bioavailability of PZQ. METHODS: Solubility tests and pseudo-ternary phase diagrams were applied to screen optimal oils, surfactants and co-surfactants of NE. The hydrogels were characterized for gelling time, surface exudates, rheological properties and in vitro drug release. Formulation optimization of NE/CS/ß-GP/HMPC hydrogel was conducted by Box-Behnken experimental design combined with response surface methodology. In vitro cytotoxicity of hydrogel was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. The sustained-release property of PZQ in NE and optimized hydrogel was evaluated by pharmacokinetic study in rabbits. RESULTS: The formulation of PZQ-NE consisted of mass ratio of 12.5% capryol 90 containing PZQ (160 mg/g), 40% cremophor RH 40/tween 20 and transcutol HP (S/CoS = 2:1), 47.5% deionized water. PZQ releasing from NE/CS/ß-GP/HMPC hydrogels was best fitted to Higuchi model and governed by diffusion. Rheological investigation evidenced the themosensitive gelation of different hydrogel systems and their gel-like character at 37 °C. The optimized hydrogel formulation consisted of HPMC solution (103.69 mg/g), 3.03% (w/v) chitosan and 14.1% (w/v) ß-GP showed no cytotoxicity when the addition of NE was no more than 100 mg/g. Pharmacokinetic parameters indicated that NE/CS/ß-GP/HMPC hydrogel can significantly slow down drug elimination, prolong mean residence time and improve bioavailability of PZQ. CONCLUSIONS: NE/CS/ß-GP/HMPC hydrogel possessed sustained-release property and could be an alternative antischistosomal drug delivery system with improved therapeutic effect.


Assuntos
Preparações de Ação Retardada/química , Emulsões/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Praziquantel/química , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Quitosana/química , Preparações de Ação Retardada/metabolismo , Feminino , Glicerofosfatos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Masculino , Praziquantel/metabolismo , Coelhos , Reologia , Solubilidade , Soluções/química , Tensoativos/química , Temperatura
9.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832499

RESUMO

Hydroxyflutamide (HF), an active metabolite of the first generation antiandrogen flutamide, was used in clinic to treat prostate cancer targeting androgen receptor (AR). However, a drug resistance problem appears after about one year's treatment. AR T877A is the first mutation that was found to cause a resistance problem. Then W741C_T877A and F876L_T877A mutations were also reported to cause resistance to HF, while W741C and F876L single mutations cannot. In this study, molecular dynamics (MD) simulations combined with the molecular mechanics generalized Born surface area (MM-GBSA) method have been carried out to analyze the interaction mechanism between HF and wild-type (WT)/mutant ARs. The obtained results indicate that AR helix 12 (H12) plays a pivotal role in the resistance of HF. It can affect the coactivator binding site at the activation function 2 domain (AF2, surrounded by H3, H4, and H12). When H12 closes to the AR ligand-binding domain (LBD) like a lid, the coactivator binding site can be formed to promote transcription. However, once H12 is opened to expose LBD, the coactivator binding site will be distorted, leading to invalid transcription. Moreover, per-residue free energy decomposition analyses indicate that N705, T877, and M895 are vital residues in the agonist/antagonist mechanism of HF.


Assuntos
Antagonistas de Androgênios/farmacologia , Flutamida/análogos & derivados , Simulação de Dinâmica Molecular , Receptores Androgênicos/química , Antagonistas de Androgênios/química , Sítios de Ligação , Flutamida/química , Flutamida/farmacologia , Humanos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
10.
Molecules ; 22(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598377

RESUMO

p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Herbicidas/química , Ácidos Fenilpirúvicos/química , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/química , 4-Hidroxifenilpiruvato Dioxigenase/química , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Plantas Daninhas/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Interface Usuário-Computador
11.
J Comput Aided Mol Des ; 30(12): 1189-1200, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27848066

RESUMO

R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.


Assuntos
Aminoácidos/genética , Antagonistas de Receptores de Andrógenos/química , Androgênios/química , Anilidas/química , Antineoplásicos/química , Nitrilas/química , Receptores Androgênicos/química , Compostos de Tosil/química , Sítios de Ligação , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Receptores Androgênicos/genética , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica
12.
J Chem Inf Model ; 55(9): 2015-25, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26274591

RESUMO

S-Palmitoylation is a key regulatory mechanism controlling protein targeting, localization, stability, and activity. Since increasing evidence shows that its disruption is implicated in many human diseases, the identification of palmitoylation sites is attracting more attention. However, the computational methods that are published so far for this purpose have suffered from a poor balance of sensitivity and specificity; hence, it is difficult to get a good generalized prediction ability on an external validation set, which holds back the further analysis of associations between disruption of palmitoylation and human inherited diseases. In this work, we present a reliable identification method for protein S-palmitoylation sites, called SeqPalm, based on a series of newly composed features from protein sequences and the synthetic minority oversampling technique. With only 16 extracted key features, this approach achieves the most favorable prediction performance up to now with sensitivity, specificity, and Matthew's correlation coefficient values of 95.4%, 96.3%, and 0.917, respectively. Then, all known disease-associated variations are studied by SeqPalm. It is found that 243 potential loss or gain of palmitoylation sites are highly associated with human inherited disease. The analysis presents several potential therapeutic targets for inherited diseases associated with loss or gain of palmitoylation function. There are even biological evidence that are coordinate with our prediction results. Therefore, this work presents a novel approach to discover the molecular basis of pathogenesis associated with abnormal palmitoylation. SeqPalm is now available online at http://lishuyan.lzu.edu.cn/seqpalm , which can not only annotate the palmitoylation sites of proteins but also distinguish loss or gain of palmitoylation sites by protein variations.


Assuntos
Simulação por Computador , Doenças Genéticas Inatas/genética , Modelos Genéticos , Palmitatos/química , Proteína S/química , Algoritmos , Sítios de Ligação , Variação Genética , Humanos , Lipoilação
13.
Arch Pharm (Weinheim) ; 347(11): 825-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25363411

RESUMO

Matrix metalloproteinase 13 (MMP-13) plays an important role in the degradation of articular cartilage and has been considered as an attractive target for the treatment of osteoarthritis; hence, the development of efficient inhibitors of MMP-13 has become a hot study field. Taking a series of carboxylic acid-based MMP-13 inhibitors as research object, this work utilized an extended QSAR method to analyze the structure-activity relationships. We focused on two important topics in QSAR: bioactive conformation and descriptors. Firstly, molecular docking was carried out to dock all molecules into the MMP-13 active site in order to obtain the bioactive conformation. Secondly, based on the docked complex, descriptors characterizing receptor-ligand interactions and the ligand structure were calculated. Thirdly, a genetic algorithm (GA) and multiple linear regression (MLR) were employed to select important descriptors related to inhibitory activities, simultaneously, to build the predictive model. The built model gave satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the selected descriptors were explored to elucidate important factors influencing the inhibition activities. This study demonstrates that the selection strategy of the docking-guided bioactive conformation is rational and useful in predicting MMP-13 inhibitor activities, and receptor-ligand complex descriptors have an advantage over directly reflecting receptor-ligand interactions.


Assuntos
Ácidos Carboxílicos/farmacologia , Desenho Assistido por Computador , Desenho de Fármacos , Metaloproteinase 13 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Simulação de Acoplamento Molecular , Algoritmos , Ácidos Carboxílicos/química , Ligantes , Modelos Lineares , Metaloproteinase 13 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
14.
Antioxidants (Basel) ; 12(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36829873

RESUMO

Cannabidiol (CBD), derived from the plant cannabis, can be used in the cosmetics industry for its antioxidant, anti-inflammatory, anti-wrinkle and whitening effects. However, CBD is purified from the hemp plant extract, its source is very limited and under strict control. So in this study, computational and experimental methods were combined to search for novel CBD substitutes with high biology potencies. The action mode between CBD and target protein cannabidiol receptor 1 was studied to find the key skeleton, which was used to virtually screen a natural products database to search for compounds with 70% similarity. The hit compounds with high docking scores were selected for the ABTS and DPPH free radical scavenging experiments for antioxidant evaluation. The effects on the expressions of nitric oxide (NO), interleukin-6 (IL-6), COX-2 and iNOS in RAW264.7 cell line were detected to demonstrate their anti-inflammatory abilities. The effect of anti-wrinkle ability were evaluated by detecting the extracellular matrix, such as collagen, elastin, fibronectin and reactive oxygen species (ROS) in HFF-1. The effects on melanin production and tyrosinase activity in Bb16F10 were also detected. As a result, two compounds were found to be superior to cannabidiol, in terms of antioxidant, anti-wrinkle and whitening efficacy with a lower cytotoxicity.

15.
Curr Med Chem ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37211852

RESUMO

INTRODUCTION: Chronic myeloid leukemia (CML) is a kind of malignant tumor formed by the clonal proliferation of bone marrow hematopoietic stem cells. BCR-ABL fusion protein, found in more than 90% of patients, is a vital target for discovering anti-CML drugs. Up to date, imatinib is the first BCR-ABL tyrosine kinase inhibitor (TKI) approved by the FDA for treating CML. However, the drug resistance problems appeared for many reasons, especially the T135I mutation, a "gatekeeper" of BCR-ABL. Currently, there is no long-term effective and low side effect drug in clinical. METHODS: This study intends to find novel TKIs targeting BCR-ABL with high inhibitory activity against T315I mutant protein by combining artificial intelligence technology and cell growth curve, cytotoxicity, flow cytometry and western blot experiments. RESULTS: The obtained compound was found to kill leukemia cells, which had good inhibitory efficacy in BaF3/T315I cells. Compound No 4 could induce cell cycle arrest, cause autophagy and apoptosis, and inhibit the phosphorylation of BCR-ABL tyrosine kinase, STAT5 and Crkl proteins. CONCLUSION: The results indicated that the screened compound could be used as a lead compound for further research to discover ideal chronic myeloid leukemia therapeutic drugs.

16.
Biochim Biophys Acta Gen Subj ; 1867(3): 130303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627088

RESUMO

Globally, diabetes mellitus has been a major epidemic bringing metabolic and endocrine disorders. Currently, 1 in 11 adults suffers from diabetes mellitus, among the patients >90% contract type 2 diabetes mellitus (T2DM). Therefore, it is urgent to develop new drugs that effectively prevent and treat type 2 diabetes through new targets. With high-throughput screening, we found that sulfathiazole decreased the blood glucose and improved glucose metabolism in T2DM mice. Notably, we discovered that sulfathiazole treated T2DM by activating CYP19A1 protein to synthesize estrogen. Collectively, sulfathiazole along with CYP19A1 target bring new promise for the better therapy of T2DM.


Assuntos
Aromatase , Diabetes Mellitus Tipo 2 , Sulfatiazóis , Animais , Camundongos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estrogênios , Sulfatiazóis/uso terapêutico , Aromatase/efeitos dos fármacos
17.
Arch Pharm (Weinheim) ; 345(10): 759-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22829314

RESUMO

Organic anion transporters (OATs) have been proved to play important roles in the membrane transport of numerous potentially toxic xenobiotics, drugs, and endogenous metabolites. In general, OATs substrates can compete with one another for the transporter to mutually decrease renal secretion and thus delay the clearance and prolong the duration of action of each compound. Such interactions have the potential to bring about adverse outcomes for clinical cases. Therefore, it is very important to assess the molecular bioactivity to inhibit OATs during the development of new drugs and co-administration. In this work, the relationships between 45 chemicals and their corresponding hOAT1 and hOAT3 inhibitory activities were analyzed. The quantitative structure-activity relationship (QSAR) model was developed by genetic algorithm and multiple linear regression method. The predictive power of the proposed model was strictly evaluated, and the applicability domain was also defined. The proposed models were robust and satisfactory and could provide a feasible and effective tool for hOAT1 or hOAT3 inhibitor screening.


Assuntos
Desenho de Fármacos , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Algoritmos , Transporte Biológico/efeitos dos fármacos , Estudos de Viabilidade , Humanos , Modelos Lineares , Relação Quantitativa Estrutura-Atividade
18.
Chem Asian J ; 17(18): e202200611, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883252

RESUMO

Heavier analogues of carbonyls, in the form of "R2 E=O" (E=Si, Ge, Sn, Pb), feature a high polar E=O double bond. In contrast to carbonyl compounds, heavier analogues are extremely unstable and prone to proceed head-to-tail oligomerization. Thus, the isolation of such species under ambient conditions is a challenging synthetic target in main group chemistry. In recent years, much progress has been achieved in the synthesis and isolation of a variety of Lewis base/acid, Lewis base-stabilized and even Lewis acid/base free heavier analogues. These compounds exhibit interesting reactivities, such as small molecule activation and metathesis reactions, indicating the potential of heavier analogues in synthetic chemistry. This review summarizes the recent achievements in the chemistry of Lewis base and/or acid stabilized heavier analogues of carbonyls, including synthetic approaches, structural parameters and reactivity of these isolable compounds.


Assuntos
Bases de Lewis , Estrutura Molecular
19.
Nat Prod Res ; 36(5): 1245-1252, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33445960

RESUMO

To search for antifungal leads, the metabolites of an insect-derived fungus Fusarium lateritium ZMT01 were investigated, providing five sesquiterpenes (1-5), including new molecules microsphaeropsisins D and E (1 and 2). The evaluated antifungal activities in vitro which are higher than the positive control triadimefon include: 1 and 2 towards Fusarium oxysporum (MICs 50, 25 mg L-1; triadimefon 100 mg L-1); 1, 2, 4 and 5 towards Penicillium italicum (MICs 25, 12.5, 25, 25; triadimefon 50 mg L-1), 1, 2 and 4 towards Colletotrichum musae (MICs 25, 12.5, 25; triadimefon 80 mg L-1), 2 and 4 towards Fusarium graminearum (MICs 100, 100; triadimefon 150 mg L-1). The bioassay in vivo displayed that the banana anthracnose control effect of 2 (100 mg L-1) was also higher than that of triadimefon (Inhibition ratios 27.5 ± 2.5%, 55.3 ± 1.4%, 52.1 ± 1.3% for 2, 22.5 ± 2.1%, 47.2 ± 2.0%, 36.6 ± 2.2% for triadimefon at 4 d, 8 d and 12 d, respectively).[Formula: see text].


Assuntos
Fusarium , Musa , Sesquiterpenos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Sesquiterpenos/farmacologia
20.
Front Pharmacol ; 13: 877706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387336

RESUMO

Stroke is the second leading cause of death worldwide and the leading cause of long-term disability that seriously endangers health and quality of human life. Tissue-type fibrinogen activator is currently the only drug approved by FDA for the treatment of ischemic stroke. Neuroprotection is theoretically a common strategy for the treatment of both ischemic and hemorrhagic stroke; therefore, the development of neuroprotective agent has been the focus of research. However, no ideal neuroprotective drug is clinically available. Phosphoglycerate kinase-1 (PGK1) activator has the effect of inhibiting apoptosis and protecting tissue damage, and therefore could be a potential neuroprotective agent. To obtain effective PGK1 activators, we virtually screened a large chemical database and their evaluated the efficacy by the Drosophila oxidative stress model, PGK1 enzymatic activity assay, and oxygen-glucose stripping reperfusion (OGD/R) model. The results showed that compounds 7979989, Z112553128 and AK-693/21087020 are potential PGK1 activators with protective effects against PQ-induced oxidative stress in the Drosophila model and could effectively ameliorate apoptosis induced by OGD/R-induced neuronal cell injury. Additionally, compounds 7979989 and Z112553128 are effective in alleviating LPS-induced cellular inflammation. This study indicated that these compounds are promising lead compounds that provide theoretical and material basis to the neuroprotective drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA