Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 145(13): 7242-7251, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36877826

RESUMO

Sn-based materials have been demonstrated as promising catalysts for the selective electrochemical CO2 reduction reaction (CO2RR). However, the detailed structures of catalytic intermediates and the key surface species remain to be identified. In this work, a series of single-Sn-atom catalysts with well-defined structures is developed as model systems to explore their electrochemical reactivity toward CO2RR. The selectivity and activity of CO2 reduction to formic acid on Sn-single-atom sites are shown to be correlated with Sn(IV)-N4 moieties axially coordinated with oxygen (O-Sn-N4), reaching an optimal HCOOH Faradaic efficiency of 89.4% with a partial current density (jHCOOH) of 74.8 mA·cm-2 at -1.0 V vs reversible hydrogen electrode (RHE). Employing a combination of operando X-ray absorption spectroscopy, attenuated total reflectance surface-enhanced infrared absorption spectroscopy, Raman spectroscopy, and 119Sn Mössbauer spectroscopy, surface-bound bidentate tin carbonate species are captured during CO2RR. Moreover, the electronic and coordination structures of the single-Sn-atom species under reaction conditions are determined. Density functional theory (DFT) calculations further support the preferred formation of Sn-O-CO2 species over the O-Sn-N4 sites, which effectively modulates the adsorption configuration of the reactive intermediates and lowers the energy barrier for the hydrogenation of *OCHO species, as compared to the preferred formation of *COOH species over the Sn-N4 sites, thereby greatly facilitating CO2-to-HCOOH conversion.

2.
J Am Chem Soc ; 145(28): 15600-15610, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418344

RESUMO

Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO2 reduction reaction (CO2RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N4 center in its resting state. Operando 57Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N4 to a HS Fe(II)N4 center with decreasing potential, CO2- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc-. Altogether, the HS Fe(II)Pc- species is identified as the catalytic intermediate for CO2RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc- species, resulting in an optimal binding strength to CO2 and thus boosting the catalytic performance of CO2RR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO2RR.

3.
J Am Chem Soc ; 145(37): 20683-20691, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683296

RESUMO

Metastable state is the most active catalyst state that dictates the overall catalytic performance and rules of catalytic behaviors; however, identification and stabilization of the metastable state of catalyst are still highly challenging due to the continuous evolution of catalytic sites during the reaction process. In this work, operando 119Sn Mössbauer measurements and theoretical simulations were performed to track and identify the metastable state of single-atom Sn in copper oxide (Sn1-CuO) for highly selective CO2 electroreduction to CO. A maximum CO Faradaic efficiency of around 98% at -0.8 V (vs. RHE) over Sn1-CuO was achieved at an optimized Sn loading of 5.25 wt. %. Operando Mössbauer spectroscopy clearly identified the dynamic evolution of atomically dispersed Sn4+ sites in the CuO matrix that enabled the in situ transformation of Sn4+-O4-Cu2+ to a metastable state Sn4+-O3-Cu+ under CO2RR conditions. In combination with quasi in situ X-ray photoelectron spectroscopy, operando Raman and attenuated total reflectance surface enhanced infrared absorption spectroscopies, the promoted desorption of *CO over the Sn4+-O3 stabilized adjacent Cu+ site was evidenced. In addition, density functional theory calculations further verified that the in situ construction of Sn4+-O3-Cu+ as the true catalytic site altered the reaction path via modifying the adsorption configuration of the *COOH intermediate, which effectively reduced the reaction free energy required for the hydrogenation of CO2 and the desorption of the *CO, thereby greatly facilitating the CO2-to-CO conversion. This work provides a fundamental insight into the role of single Sn atoms on in situ tuning the electronic structure of Cu-based catalysts, which may pave the way for the development of efficient catalysts for high-selectivity CO2 electroreduction.

4.
Environ Sci Technol ; 57(37): 14071-14081, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37681682

RESUMO

Currently, the lack of model catalysts limits the understanding of the catalytic essence. Herein, we report the functional group modification of model single atom catalysts (SACs) with an accurately regulated electronic structure for accelerating the sluggish kinetics of the Fenton-like reaction. The amino-modified cobalt phthalocyanine anchored on graphene (CoPc/G-NH2) shows superior catalytic performance in the peroxymonosulfate (PMS) based Fenton-like reaction with Co mass-normalized pseudo-first-order reaction rate constants (kobs, 0.2935 min-1), which is increased by 4 and 163 times compared to those of CoPc/G (0.0737 min-1) and Co3O4/G (0.0018 min-1). Density functional theory (DFT) calculations demonstrate that the modification of the -NH2 group narrows the gap between the d-band center and the Fermi level of a single Co atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for the activation of PMS. Moreover, the scale-up experiment realizes 100% phenol removal at 7200-bed volumes during 240 h continuous operation without obvious decline in catalytic performance. This work provides in-depth insight into the catalytic mechanism of Fenton-like reactions and demonstrates the electronic engineering of SACs as an effective strategy for improving the Fenton-like activity to achieve the goal of practical application.


Assuntos
Eletrônica , Poluentes Ambientais , Catálise , Cobalto
5.
Angew Chem Int Ed Engl ; 62(6): e202215737, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478093

RESUMO

Via hydrothermal synthesis of Sn-Al gels, mild dealumination and ion exchange, a bimetallic Sn-Ni-Beta catalyst was prepared which can convert glucose to methyl lactate (MLA) and methyl vinyl glycolate (MVG) in methanol at yields of 71.2 % and 10.2 %, respectively. Results from solid-state magic-angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, transmission electron microscopy, spectroscopic analysis, probe-temperature-programmed desorption, and density functional theory calculations conclusively reveal that the openness of the Sn sites, such as by the formation of [(SiO)3 -Sn-OH] entities, is governed by an adjacent metal cation such as Ni2+ , Co2+ , and Mn2+ . This relies on the low structure-defective pore channel, provided by the current synthesis scheme, and the specific silica hydroxyl anchor point is associated with the incorporation of Sn for additional and precise metal ion localization. The presence of metal cations significantly improved the catalytic performance of Sn-Ni-Beta for glucose isomerization and conversion to MLA of sugar compared with Sn-Beta.

6.
Angew Chem Int Ed Engl ; 62(10): e202211174, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562773

RESUMO

Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2 RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2 RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2 RR to produce formate.

7.
Angew Chem Int Ed Engl ; 59(2): 798-803, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657106

RESUMO

Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2 RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2 RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2 RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2 RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2 RR was determined to be *CO2 - +H+ →*COOH. This study tackles the four challenges faced by the CO2 RR; namely, activity, selectivity, stability, and dynamics.

8.
Environ Sci Technol ; 53(19): 11391-11400, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436973

RESUMO

The maximization of the numbers of exposed active sites in supported metal catalysts is important to achieve high reaction activity. In this work, a simple strategy for anchoring single atom Fe on SBA-15 to expose utmost Fe active sites was proposed. Iron salts were introduced into the as-made SBA-15 containing the template and calcined for simultaneous decomposition of the iron precursor and the template, resulting in single atom Fe sites in the nanopores of SBA-15 catalysts (SAFe-SBA). X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and extended X-ray absorption fine structure (EXAFS) imply the presence of single atom Fe sites. Furthermore, EXAFS analysis suggests the structure of one Fe center with four O atoms, and density functional theory calculations (DFT) simulate this structure. The catalytic performances of SAFe-SBA were evaluated in Fenton-like catalytic oxidation of p-hydroxybenzoic acid (HBA) and phenol. It was found that the single atom SAFe-SBA catalysts displayed superior catalytic activity to aggregated iron sites (AGFe-SBA) in both HBA and phenol degradation, demonstrating the advantage of SAFe-SBA in catalysis.


Assuntos
Ferro , Fenol , Catálise , Oxirredução , Difração de Raios X
9.
J Am Chem Soc ; 140(39): 12469-12475, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30165734

RESUMO

The Fenton-like process presents one of the most promising strategies to generate reactive oxygen-containing radicals to deal with the ever-growing environmental pollution. However, developing improved catalysts with adequate activity and stability is still a long-term goal for practical application. Herein, we demonstrate single cobalt atoms anchored on porous N-doped graphene with dual reaction sites as highly reactive and stable Fenton-like catalysts for efficient catalytic oxidation of recalcitrant organics via activation of peroxymonosulfate (PMS). Our experiments and density functional theory (DFT) calculations show that the CoN4 site with a single Co atom serves as the active site with optimal binding energy for PMS activation, while the adjacent pyrrolic N site adsorbs organic molecules. The dual reaction sites greatly reduce the migration distance of the active singlet oxygen produced from PMS activation and thus improve the Fenton-like catalytic performance.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38607228

RESUMO

Bisphenol compounds [bisphenol A (BPA), etc.] are one class of the most important and widespread pollutants in food and environment, which pose severe endocrine disrupting effect, reproductive toxicity, immunotoxicity, and metabolic toxicity on humans and animals. Simultaneous rapid determination of BPA and its analogues (bisphenol S, bisphenol AF, etc.) with extraordinary potential resolution and sensitivity is of great significance but still extremely challenging. Herein, a series of single-atom catalysts (SACs) were synthesized by anchoring different metal atoms (Mg, Co, Ni, and Cu) on N-doped carbon materials and used as sensing materials for simultaneous detection of bisphenols with similar chemical structures. The Mg-based SAC enables the potential discrimination and simultaneous rapid detection of multiple bisphenols, showing outstanding analytical performances, outperforming all other SACs and traditional electrode materials. Our experiments and density functional theory calculations show that pyrrolic N serves as the adsorption site for the adsorption of bisphenols and the Mg atom serves as the active site for the electrocatalytic oxidation of bisphenols, which play a synergistic role as dual active centers in improving the sensing performance. The results of this work may pave the way for the rational design of SACs as advanced sensing and catalytic materials.

11.
Adv Mater ; 36(11): e2308243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102967

RESUMO

The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process.

12.
Nat Commun ; 14(1): 3401, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296132

RESUMO

While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.


Assuntos
Dióxido de Carbono , Metanol , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Carbono
13.
Chem Commun (Camb) ; 57(80): 10335-10338, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34519291

RESUMO

A spinel-alumina inert oxide supported gold catalyst with high Au dispersion and excellent CO oxidation activity was developed by a deposition-precipitation method. The activation atmosphere could tune the reaction pathway by adjusting the amount of surface adsorbed water species, thus transforming the reaction intermediates from HCO3- or CO32- to COOH.

14.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967833

RESUMO

Single-atom catalysts (SACs) have become the most attractive frontier research field in heterogeneous catalysis. Since the atomically dispersed metal atoms are commonly stabilized by ionic/covalent interactions with neighboring atoms, the geometric and electronic structures of SACs depend greatly on their microenvironment, which, in turn, determine the performances in catalytic processes. In this review, we will focus on the recently developed strategies of SAC synthesis, with attention on the microenvironment modulation of single-atom active sites of SACs. Furthermore, experimental and computational advances in understanding such microenvironment in association to the catalytic activity and mechanisms are summarized and exemplified in the electrochemical applications, including the water electrolysis and O2/CO2/N2 reduction reactions. Last, by highlighting the prospects and challenges for microenvironment engineering of SACs, we wish to shed some light on the further development of SACs for electrochemical energy conversion.

15.
Avian Dis ; 53(1): 124-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19432015

RESUMO

A total of 15 Mycoplasma gallisepticum (MG) isolates from Chinese poultry farms and three reference strains (S6, BG44T, and F36) were characterized by nested polymerase chain reaction and sequence analysis for two identical and directly repeated sequences, DR-1 and DR-2, within the putative cytadhesin pvpA gene. The molecular variation patterns of the pvpA genes among the 15 MG isolates were identical to the reference strains S6 and BG44T, that is, a 60 bp deletion in DR-1 and DR-2 and repetition of 1) a proline residue 33 times and 2) a tetrapeptide motif 10 times (Pro-Arg-Pro-X, where X is Met, Gly, Asn, or Gln for 6, 1, 1, or 2 times, respectively). However, the variation pattern is quite different from that of the vaccine strain F36, in which only the DR-1 region is retained, 24 of the 25 peptides comprising the linkage sequence between DR-1 and DR-2 are missing, and the entire DR-2 sequence is deleted. A comparison of the sequences within the DR-1 and DR-2 repeated regions among clinical isolates from different geographic sites suggested that > or = 30 proline residue repeats and 7-10 repeats of the tetrapeptide motif may exert an important role in the functionality of PvpA as an adhesin molecule. Size variation and differences in deletion patterns in the C-terminal coding region of the pvpA gene were observed among the field isolates and vaccine strain F, providing the basis for strain differentiation.


Assuntos
Adesinas Bacterianas/genética , Variação Genética , Mycoplasma gallisepticum/genética , Adesinas Bacterianas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Bacteriano , Dados de Sequência Molecular , Sequências Repetidas Terminais
16.
Adv Mater ; 31(50): e1902031, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31282036

RESUMO

Single-atom catalysts (SACs), with atomically distributed active metal sites on supports, serve as a newly advanced material in catalysis, and open broad prospects for a wide variety of catalytic processes owing to their unique catalytic behaviors. To construct SACs with precise structures and high density of accessible single-atom sites, while preventing aggregation to large nanoparticles, various strategies for their chemical synthesis have been recently developed by improving the distribution and chemical bonding of active sites on supports, which results in excellent activity and selectivity in a variety of catalytic reactions. Noble-metal-based SACs are discussed, and their structural properties, chemical synthesis, and catalytic applications are highlighted. The structure-activity relationships and the underlying catalytic mechanisms are addressed, including the influences of surface species and reducibility of supports on the activity and stability, impact of the unique structural and electronic properties of single-atom centers modulated by metal/support interactions on catalytic activity and selectivity, and how the modified catalytic mechanism obtained by inhibiting the multiatoms involves catalytic pathways. Finally, the prospects and challenges for development in this field are highlighted.

17.
Chem Commun (Camb) ; 55(50): 7151-7154, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31119224

RESUMO

Herein, we, for the first time, report a high spin Co-Fe Prussian blue analogue (Co-Fe PBA) as a highly efficient Fenton-like catalyst for sulfate radical (SO4˙-) production. Our experiments and density functional theory (DFT) calculations show that the largely elongated SO4-OH bond length, strengthened adsorption and facilitated electron transfer for peroxymonosulfate (PMS) activation catalyzed by high-spin (HS) CoII are the main factors contributing to its excellent activity.

18.
ACS Appl Mater Interfaces ; 10(44): 38051-38056, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360089

RESUMO

Controllable synthesis of metal-organic frameworks with well-defined morphology, composition, and size is of great importance toward understanding their structure-property relationship in various applications. Herein, we demonstrate a general strategy to modulate the relative growth rate of the secondary building units (SBUs) along different crystal facets for the synthesis of Fe-Co, Mn0.5Fe0.5-Co, and Mn-Co Prussian blue analogues (PBAs) with tunable morphologies. The same growth rate of SBUs along the {100}, {110}, and {111} surfaces at 0 °C results in the formation of spherical PBA particles, while the lowest growth rate of SBUs along the {100} surface resulting from the highest surface energy with increasing reaction temperature induces the formation of PBA cubes. Fenton reaction was used as the model reaction to probe the structure-catalytic activity relation for the as-synthesized catalysts. The cubic Fe-Co PBA was found to exhibit the best catalytic performance with reaction rate constant 6 times higher than that of the spherical counterpart. Via density functional theory calculations, the abundant enclosed {100} facets in cubic Fe-Co PBA were identified to have the highest surface energy and favor high Fenton reaction activity.

20.
Biomed Pharmacother ; 96: 1324-1334, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29203385

RESUMO

The purpose of this study was to explore the role by which the DNA-dependent protein kinase complex catalytic subunit (DNA-PKcs) influences osteosarcoma MG-63 cell apoptosis, proliferation, migration and invasion. Osteosarcoma tissues and adjacent normal tissues were obtained from 57 osteosarcoma patients. Human osteosarcoma MG-63 cells were assigned into designated groups including the blank, siRNA-negative control (NC) and siRNA-DNA-PKcs groups. RT-qPCR and Western blotting methods were employed to evaluate the mRNA and protein expressions of DNA-PKcs. A cell counting kit-8 (CCK-8) assay was performed to assess cell viability. The evaluation of cell migration and invasion were conducted by means of Scratch test and Transwell assay. Flow cytometry with PI and annexin V/PI double staining was applied for the analysis of the cell cycle and apoptosis. Twenty-Four Balb/c nude mice were recruited and randomly divided into the blank, siRNA-NC and siRNA-DNA-PKcs groups. Tumorigenicity of the Balb/c nude mice was conducted to evaluate the rate of tumor formation, as well as for the assessment of tumor size and weight, and confirm the number of lung metastatic nodules in the mice post transfection. Osteosarcoma tissues were found to possess greater expression of DNA-PKcs than that of the adjacent normal tissues. DNA-PKcs expression in osteosarcoma tissues were correlated with the clinical stage and metastasis. Compared with the blank and siRNA-NC groups, proliferation, miration, as well as the invasion abilities of the MG-63 cells increased. Furthermore, an increase in apoptosis and cells at the G1 stage in the MG-63 cells was observed, while there were reductions in the cells detected at the S stage. The mRNA and protein expressions of CyclinD1, PCNA, Bcl-2 decreased while those of Bax increased in the siRNA-DNA-PKcs group. The tumor formation rate, tumor diameter, weight and lung metastatic nodules among the nude mice in the siRNA-DNA-PKcs group were all lower than those in the blank and siRNA-NC groups. The observations and findings of the study suggested that the silencing of DNA-PKcs inhibits the proliferation, migration and invasion, while acting to promote cell apoptosis in MG-63 cells and osteosarcoma growth in nude mice.


Assuntos
Apoptose/genética , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Proteína Quinase Ativada por DNA/genética , Inativação Gênica/fisiologia , Invasividade Neoplásica/genética , Osteossarcoma/genética , Adolescente , Adulto , Idoso , Animais , Carcinogênese/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Criança , DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Osteossarcoma/patologia , RNA Mensageiro/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA