Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biomacromolecules ; 24(9): 4113-4122, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611236

RESUMO

Herein, a dual-functioning deep eutectic solvent system based on triethylmethylammonium chloride and imidazole was harnessed as a swelling agent and a reaction medium for the esterification of cellulose with n-octyl succinic anhydride (OSA). The modified or amphiphilic cellulose nanofibers (ACNFs), synthesized using three different OSA-to-anhydroglucose unit molar ratios (0.5:1, ACNF-1; 1:1, ACNF-2; and 1.5:1, ACNF-3), were further converted into nanofibers with degree of substitution (DS) values of 0.24-0.66. The ACNFs possessed a lateral dimension of 4.24-9.22 nm and displayed surface activity due to the balance of hydrophobic and hydrophilic characteristics. The ACNFs made stable aqueous dispersions; however, the instability index of ACNF-3 (0.51) was higher than those of ACNF-1 (0.29) and ACNF-2 (0.33), which was attributed to the high DS-induced hydrophobicity, causing the instability in water. The amphiphilic nature of ACNFs promoted their performance as stabilizers in oil-in-water Pickering emulsions with average droplet sizes of 4.85 µm (ACNF-1) and 5.48 µm (ACNF-2). Self-standing films of ACNFs showed high contact angles for all the tested DS variants (97.48-114.12°), while their tensile strength was inversely related to DS values (ACNF-1: 115 MPa and ACNF-3: 49.5 MPa). Aqueous dispersions of ACNFs were also tested for coating fruits to increase their shelf life. Coatings improved their shelf life by decreasing oxygen contact and moisture loss.


Assuntos
Celulose , Nanofibras , Nanofibras/química , Nanofibras/ultraestrutura , Emulsões/química , Solventes/química , Celulose/química , Celulose/ultraestrutura , Betula/química , Esterificação
2.
Phys Chem Chem Phys ; 24(46): 28609-28620, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36413260

RESUMO

Eutectic mixtures and deep eutectic solvents (DESs) are promising green media for the pre-treatment of lignocellulose materials. They can be harnessed for the swelling of cellulose and further facilitate cellulose hydrolysis, derivatization, and production of cellulose-based (nano) materials. Several studies indicated that water can take part in the formation of the nanostructure of DES; however, it is still unclear how additional water influences many important properties and functioning of DES, especially when the molar ratio of compounds differs from the eutectic point composition. Here, viscosity, pH, conductivity, solvatochromic and solvatomagnetic solvent parameters, and fiber swelling capacity of choline chloride and urea mixtures demonstrating different molar ratios were investigated in the presence and absence of added water. The participation of water in the formation of molecular clusters with choline chloride and urea was indicated by viscosity, pH, and conductivity measurements. Hydrogen bond acceptor values of aqueous mixtures increased as a function of water content, and the results obtained using both methods were in line, indicating their suitability for the determination of hydrogen bond acidity of aqueous choline chloride-urea mixtures. However, hydrogen bond basicity determined by solvatochromic and magnetic methods exhibited almost opposite trends. The close investigation of the chemical shift of solvatomagnetic probes indicated that the chemical environment of the choline chloride-urea (1 : 2) mixture remained constant until the water content of 30 wt% was in line with previous molecular simulations. When cellulose fibers were treated with mixtures under mixing, the non-ideality of the choline chloride-urea mixture and the absence of water were found to be advantageous; however, aqueous mixtures efficiently increased the diameters of cellulose fibers in the absence of mixing, and water-containing mixtures appeared to be appealing systems for cellulose pretreatments.


Assuntos
Celulose , Ureia , Água , Colina , Ligação de Hidrogênio
3.
Nanotechnology ; 31(43): 435203, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32650329

RESUMO

The continuously increasing demand for faster data traffic of our telecommunication devices requires new and better materials and devices that operate at higher frequencies than today. In this work, a porous composite of silica nanoshells and cellulose nanofibers is demonstrated as a suitable candidate of dielectric substrates to be used in future 6G frequency bands. The hollow nanospheres of amorphous SiO2 with outstanding electromagnetic properties were obtained by a template-assisted Stöber process, in which a thin shell of silica is grown on polystyrene nanospheres first, and then the polymer core is burned off in a subsequent step. To be able to produce substrates with sufficient mechanical integrity, the nanoshells of SiO2 were reinforced with cellulose nanofibers resulting in a porous composite of very low mass density (0.19 ± 0.02 g cm-3), which is easy to press and mold to form films or slabs. The low relative dielectric permittivity (ε r = 1.19 ± 0.01 at 300 GHz and ε r = 1.17 ± 0.01 at 2.0 THz) and corresponding loss tangent (tan δ= 0.011 ± 0.001 at 300 GHz and tan δ = 0.011 ± 0.001 at 2.0 THz) of the composite films are exploited in substrates for radio frequency filter structures designed for 300 GHz operation.

4.
Small ; 14(38): e1801937, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30151995

RESUMO

In the present study, interfacial complexation spinning of oppositely charged cellulose-materials is applied to fabricate hierarchical and continuous nanocellulose based filaments under aqueous conditions by using cationic cellulose nanocrystals with different anionic celluloses including soluble sodium carboxymethyl cellulose and insoluble 2,2,6,6-tetramethylpiperidinyl-1-oxy radical-oxidized cellulose nanofibers and dicarboxylated cellulose nanocrystals (DC-CNC). The morphologies of the wet and dry nanocellulose based filaments are further investigated by optical and electron microscopy. All fabricated continuous nanocellulose based filaments display a hierarchical structure similar to the natural cellulose fibers in plant cells. As far as it is known, this is not only the first report about the fabrication of nanocellulose based filaments by interfacial complexation of cationic CNCs with anionic celluloses but also the first demonstration of fabricating continuous fibers directly from oppositely charged nanoparticles by interfacial nanoparticle complexation (INC). This INC approach may provide a new route to design continuous filaments from many other oppositely charged nanoparticles with tailored characteristics.

5.
Langmuir ; 34(8): 2800-2806, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406746

RESUMO

The emulsification properties of carboxymethyl chitosan (CMChi) and hydrophobically modified carboxymethyl chitosan (h-CMChi) were studied as a function of pH and dodecane/water ratio. The pH was varied between 6-10, and the oil/water ratio between 0.1-2.0. In CMChi solution, the emulsion stability increased as the pH was lowered from 10 to 7, and the phase inversion was shifted from oil/water ratio 1.0 to 1.8, respectively. The system behaved differently in pH 6 due to the aggregation of CMChi and the formation of nanoparticles (∼200-300 nm). No phase inversion was observed and the maximum amount of emulsified oil was reached at oil/water ratio 1.2. The h-CMChi showed similar behavior as a function of pH but, due to hydrophobic modification, the phase inversion was shifted to higher values in pH 7-10. In pH 6, the behavior was similar, but the maximum amount of emulsified oil was higher compared to CMChi. The amount of adsorbed particles correlated with the emulsified amount of oil. Reversible emulsification of dodecane was demonstrated by pH adjustment using CMChi and h-CMChi solutions. The formed emulsions were gel-like, suggesting particle-particle interaction.


Assuntos
Quitosana/análogos & derivados , Emulsificantes/química , Quitosana/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
6.
Molecules ; 23(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366392

RESUMO

In this experiment, the influence of the morphology and surface characteristics of cellulosic nanoparticles (i.e., cellulose nanocrystals [CNCs] and cellulose nanofibers [CNFs]) on oil-in-water (o/w) emulsion stabilization was studied using non-modified or functionalized nanoparticles obtained following deep eutectic solvent (DES) pre-treatments. The effect of the oil-to-water ratio (5, 10, and 20 wt.-% (weight percent) of oil), the type of nanoparticle, and the concentration of the particles (0.05⁻0.2 wt.-%) on the oil-droplet size (using laser diffractometry), o/w emulsion stability (via analytical centrifugation), and stabilization mechanisms (using field emission scanning electron microscopy with the model compound-i.e., polymerized styrene in water emulsions) were examined. All the cellulosic nanoparticles studied decreased the oil droplet size in emulsion (sizes varied from 22.5 µm to 8.9 µm, depending on the nanoparticle used). Efficient o/w emulsion stabilization against coalescence and an oil droplet-stabilizing web-like structure were obtained only, however, with surface-functionalized CNFs, which had a moderate hydrophilicity level. CNFs without surface functionalization did not prevent either the coalescence or the creaming of emulsions, probably due to the natural hydrophobicity of the nanoparticles and their instability in water. Moderately hydrophilic CNCs, on the other hand, distributed evenly and displayed good interaction with both dispersion phases. The rigid structure of CNCs meant, however, that voluminous web structures were not formed on the surface of oil droplets; they formed in flat, uniform layers instead. Consequently, emulsion stability was lower with CNCs, when compared with surface-functionalized CNFs. Tunable cellulose nanoparticles can be used in several applications such as in enhanced marine oil response.


Assuntos
Celulose/química , Emulsões/química , Nanopartículas/química , Solventes/química
8.
Biomacromolecules ; 17(9): 3025-32, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27478001

RESUMO

In this study, a new method to fabricate cellulose nanocrystals (CNCs) based on DES pretreatment of wood cellulose fibers with choline chloride and organic acids are reported. Oxalic acid (anhydrous and dihydrate), p-toluenesulfonic acid monohydrate, and levulinic acid were studied as acid components of DESs. DESs were formed at elevated temperatures (60-100 °C) by combining choline chloride with organic acids and were then used to hydrolyze less ordered amorphous regions of cellulose. All the DES treatments resulted in degradation of wood fibers into microsized fibers and after mechanically disintegrating, CNCs were successfully obtained from choline chloride/oxalic acid dihydrate-treated fibers, whereas no liberation of CNCs was observed with other DESs. The DES-produced CNCs had a width and length of 9-17 and 310-410 nm, respectively. The crystallinity indexes (CrIs) and carboxylic acid content of the CNCs were 66-71% and 0.20-0.28 mmol/g, respectively. CNCs exhibited good thermal stabilities (the onset thermal degradation temperatures ranged from 275-293 °C). The demonstrated acidic DES method exhibits certain advantages over previously reported CNC productions, namely, milder processing conditions and easily obtainable and relatively inexpensive biodegradable solvents with low toxicity (compared, e.g., to ILs).


Assuntos
Celulose/química , Celulose/metabolismo , Nanopartículas/química , Solventes/química , Colina/química , Hidrólise , Ácido Oxálico/química
9.
Biomacromolecules ; 15(7): 2769-75, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24946006

RESUMO

A chemical pretreatment for producing cellulose nanocrystals (CNCs) with periodate oxidation and reductive amination is reported. This new functionalization of cellulose fibers dispenses an alternative method for fabricating individual CNCs without the widely used acid hydrolysis process. CNCs can be directly modified during the pretreatment step, and no additional post-treatments are required to tune the surface properties. Three butylamine isomers were tested to fabricate CNCs with amphiphilic features. After mechanical homogenization, CNCs occurred as individual crystallinities without aggregation where high uniformity in terms of shape and size was obtained. The elemental analysis and (1)H NMR measurement show that iso- and n-butylamine attach the highest number of butylamino groups to the cellulose fibers. Linking the alkyl groups increases the hydrophobic nature of the CNCs, where water contact angles from self-standing films up to 110.5° are reported. Since these butylamino-functionalized CNCs have hydrophobic characteristics in addition to the hydrophilic backbone of cellulose, the stabilization impact on oil/water emulsions is demonstrated as a potential application.


Assuntos
Celulose/química , Nanopartículas/química , Tensoativos/química , Butilaminas/química , Cristalografia por Raios X , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Óleo de Soja/química , Viscosidade , Água/química
11.
J Colloid Interface Sci ; 676: 61-71, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018811

RESUMO

Biogenic, sustainable two-dimensional architectures, such as films and nanopapers, have garnered considerable interest because of their low carbon footprint, biodegradability, advanced optical/mechanical characteristics, and diverse potential applications. Here, bio-based nanopapers with tailored characteristics were engineered by the electrostatic complexation of oppositely charged colloidal phosphorylated cellulose nanofibers (P-CNFs) and deacetylated chitin nanocrystals (ChNCs). The electrostatic interaction between anionic P-CNFs and cationic ChNCs enhanced the stretchability and water stability of the nanopapers. Correspondingly, they exhibited a wet tensile strength of 17.7 MPa after 24 h of water immersion. Furthermore, the nanopapers exhibited good thermal stability and excellent self-extinguishing behavior, triggered by both phosphorous and nitrogen. These features make the nanopapers sustainable and promising structures for application in advanced fields, such as optoelectronics.

12.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763705

RESUMO

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Assuntos
Celulose , Embalagem de Alimentos , Lipídeos , Nanofibras , Madeira , Nanofibras/química , Celulose/química , Embalagem de Alimentos/métodos , Madeira/química , Lipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/química , Antibacterianos/farmacologia , Viscosidade , Musa/química , Água/química , Bactérias Gram-Negativas/efeitos dos fármacos , Frutas/química
13.
ACS Sustain Chem Eng ; 11(45): 16176-16184, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38022739

RESUMO

The extraction of various minerals is commonly conducted through froth flotation, which is a versatile separation method in mineral processing. In froth flotation, depressants are employed to improve the flotation selectivity by modifying the wettability of the minerals and reducing their natural or induced floatability. However, the environmental impact of many current flotation chemicals poses a challenge to the sustainability and selectivity of the ore beneficiation processes. To mitigate this issue, cellulose, particularly nanocelluloses, has been explored as a potential alternative to promote sustainable mineral processing. This study focused on silylated cellulose nanocrystals (CNCs) as biodepressants for sulfide minerals in froth flotation. CNCs containing thiol silane groups or bifunctional CNCs containing both thiol and propyl silanes were synthesized using an aqueous silylation reaction, and their performance in the flotation of chalcopyrite and pyrite was investigated in the presence of a sodium isobutyl xanthate collector. The results showed that the modified CNCs exhibited preferential interaction between chalcopyrite, and the flotation recovery of chalcopyrite decreased from ∼76% to ∼24% in the presence of thiol-grafted CNCs at pH 6, while the pyrite recovery decreased only from ∼82% to ∼75%, indicating the efficient selectivity of thiol-silylated CNCs toward chalcopyrite depression.

14.
Environ Pollut ; 334: 122193, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460014

RESUMO

The sea area around the Orkney archipelago, Scotland is subjected to substantial maritime shipping activities. By contract, the Svalbard archipelago, Norway currently has a rather low marine traffic profile. Future projections, however, indicate that the Trans-Arctic route might change the whole transportation picture and Svalbard may be at the centre of maritime activities. Both archipelagos have sensitive environmental resources at sea and inland, including bird communities. There are, for instance, 13 Red Listed species present in Orkney and 2 in Svalbard. In this regard, it is important to address oil spill risks along existing and projected shipping routes. Hypothetical spills were simulated in twelve scenarios for both the Orkney and Svalbard archipelagos with the OpenDrift open-source software. The results indicate risks to seabird communities. For Orkney, the spills resulted in the most extensive contamination of the sea and land environments in autumn. For Svalbard, autumn spills on the contrary presented the lowest risk to seabirds. Based on the simulations, we recommend increased caution for shipping activities in the problematic seasons, improved local readiness for ship accidents and sufficient pre-incident planning.


Assuntos
Poluição por Petróleo , Animais , Svalbard , Noruega , Acidentes , Aves
15.
ACS Appl Mater Interfaces ; 15(10): 12696-12707, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36855948

RESUMO

Wound dressings are important for wound repair. The morphology of the biomaterials used in these dressings, and in particular, the pore structure affects tissue regeneration by facilitating attachment and proliferation of cells due to the hierarchical multiscale, water absorbance, and nutrient transport. In the present study, silk fibroin (SF) sponges with walls containing nanopores (SFNS) were prepared from SF nanoparticles generated during the autoclaving of SF solutions, followed by leaching the SF nanoparticles from the freeze-dried sponges of SF. The nano/microporous structure, biofluid absorbance, and porosity of the SF sponges with and without nanopores were characterized. In vitro cell proliferation, in vivo biocompatibility, and wound healing were evaluated with the sponges. The results demonstrated that SFNS had significantly increased porosity and water permeability, as well as cell attachment and proliferation when compared with SF sponges without the nanopores (SFS). Wound dressings were assessed in a rat skin wound model, and SFNS was superior to SFS in accelerating wound healing, supported by vascularization, deposition of collagen, and increased epidermal thickness over 21 days. Hence, such a dressing material with a hierarchical multiscale pore structure could promote cell migration, vascularization, and tissue regeneration independently without adding any growth factor, which would offer a new strategy to design and engineer better-performed wound dressing.


Assuntos
Fibroínas , Nanoporos , Ratos , Animais , Fibroínas/química , Cicatrização , Colágeno/metabolismo , Água , Seda
16.
Biomacromolecules ; 13(5): 1592-7, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22512713

RESUMO

Sequential regioselective periodate-chlorite oxidation was employed as a new and efficient pretreatment to enhance the nanofibrillation of hardwood cellulose pulp through homogenization. The oxidized celluloses with carboxyl contents ranging from 0.38 to 1.75 mmol/g could nanofibrillate to highly viscous and transparent gels with yields of 100-85% without clogging the homogenizer (one to four passes). On the basis of field-emission scanning electron microscopy images, the nanofibrils obtained were of typical widths of approximately 25 ± 6 nm. All of the nanofibrillar samples maintained their cellulose I crystalline structure according to wide-angle X-ray diffraction results, and the crystallinity index was approximately 40% for all samples.


Assuntos
Celulose/química , Cloretos/química , Nanofibras/química , Ácido Periódico/química , Madeira/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
17.
Bioresour Technol ; 360: 127570, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788393

RESUMO

A combined pretreatment based on alkaline deep eutectic solvent (DES) of K2CO3 and glycerol and sequential acid fractionation was developed to extract reactive lignin from wheat straw biomass. This process exhibited excellent purification performance in lignin isolation, and the lignin fractionated at low pH displayed high reactivity, having hydroxyl and carboxyl groups up to 9.60 and 2.52 mmol/g, respectively. Silica was selectively separated and removed during the precipitation stage, avoiding the "silica interference". Moreover, DES-lignin nanospheres created by self-assembly using lignin fractions obtained by acid precipitation possessed a high zeta potential, large particle size and high content of hydrophilic groups. Overall, the findings related to the dissociation mechanism and fractionation of reactive lignin during alkaline DES pretreatment and the acid sequence precipitation are crucial for facilitating lignin valorization in high-added value products.


Assuntos
Lignina , Nanosferas , Biomassa , Solventes Eutéticos Profundos , Hidrólise , Radical Hidroxila , Lignina/química , Fenóis , Dióxido de Silício , Solventes/química , Triticum
18.
Carbohydr Polym ; 297: 120069, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184157

RESUMO

The isolation of extracellular vesicles (EVs) from milk, a complex mixture of colloidal structures having a comparable size to EVs, is challenging. Although ultracentrifugation (UC) has been widely used for EV isolation, this has significant limitations, including a long processing time at high g-force conditions and large sample volume requirements. We introduced a new approach based on nature nanoentities cellulose nanofibers (CNFs) and short time and low g-force centrifugation to isolate EVs from various milk fractions. The flexible and entangled network of CNFs forms nanoporous, which entraps the EVs. Further, positively charged CNFs interact with anionic EVs through an electrostatic attraction, promoting their isolation with efficiency comparable with UC. The functionality and toxicity of isolated milk EVs were tested in Caco2 cells. Overall, the newly developed approach provides straightforward isolation and biocompatibility and preserves the natural properties of the isolated EVs, enabling further applications.


Assuntos
Vesículas Extracelulares , Nanofibras , Animais , Células CACO-2 , Celulose/farmacologia , Misturas Complexas , Humanos , Leite
19.
ACS Omega ; 6(29): 19038-19044, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337242

RESUMO

Dewatering in the preparation of cellulose nanopapers can take up to a few hours, which is a notable bottleneck in the commercialization of nanopapers. As a solution, we report a filtration-free method that is capable of preparing lactic acid-modified cellulose nanopapers within a few minutes. The bleached cellulose nanofibers (CNFs), obtained using a Masuko grinder, were functionalized by sonication-assisted lactic acid modification and centrifuged at 14 000 rpm to achieve a doughlike, concentrated mass. The concentrated CNFs were rolled into a wet sheet and dried in a vacuum drier to obtain nanopapers. The nanopaper preparation time was 10 min, which is significantly faster than the earlier time period reported in the literature (up to a few hours of preparation time). The mechanical properties of nanopaper were comparable to the previous values reported for nanopapers. In addition, the method was successfully used to prepare highly conductive functional nanopapers containing carboxylated multiwalled carbon nanotubes.

20.
ACS Appl Mater Interfaces ; 13(48): 57841-57850, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813268

RESUMO

Transforming potential waste materials into high-value-added sustainable materials with advanced properties is one of the key targets of the emerging green circular economy. Natural mica (muscovite) is abundant in the mining industry, which is commonly regarded as a byproduct and gangue mineral flowing to waste rock and mine tailings. Similarly, chitin is the second-most abundant biomass resource on Earth after cellulose, extracted as a byproduct from the exoskeleton of crustaceans, fungal mycelia, and mushroom wastes. In this study, exfoliated mica nanosheets were individualized using a mechanochemical process and incorporated into regenerated chitin matrix through an alkali dissolution system (KOH/urea) to result in a multifunctional, hybrid hydrogel, and film design. The hydrogels displayed a hierarchical and open nanoporous structure comprising an enhanced, load-bearing double-cross-linked polymeric chitin network strengthened by mica nanosheets possessing high stiffness after high-temperature curing, while the hybrid films (HFs) exhibited favorable UV-shielding properties, optical transparency, and dielectric properties. These hybrid designs derived from industrial residues pave the way toward sustainable applications for many future purposes, such as wearable devices and tissue engineering/drug delivery.


Assuntos
Silicatos de Alumínio/química , Materiais Biomiméticos/química , Biopolímeros/química , Hidrogéis/química , Minerais/química , Nanoestruturas/química , Biomassa , Teste de Materiais , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA