RESUMO
This paper reports an AlGaN-based ultraviolet-B light-emitting diode (UVB-LED) with a peak wavelength at 293 nm that was almost free of efficiency droop in the temperature range from 298 to 358 K. Its maximum external quantum efficiencies (EQEs), which were measured at a current density of 88.6 A cm-2, when operated at 298, 318, and 338 K were 2.93, 2.84, and 2.76%, respectively; notably, however, the current droop (J-droop) in each of these cases was less than 1%. When the temperature was 358 K, the maximum EQE of 2.61% occurred at a current density of 63.3 A cm-2, and the J-droop was 1.52%. We believe that the main mechanism responsible for overcoming the J-droop was the uniform distribution of the concentrations of injected electrons and holes within the multiple quantum wells. Through the subtle design of the p-type AlGaN layer, with the optimization of the composition and doping level, the hole injection efficiency was enhanced, and the Auger recombination mechanism was inhibited in an experimental setting.
Assuntos
Gálio , Semicondutores , Compostos de AlumínioRESUMO
Numerous studies have addressed the use of perovskite materials for fabricating a wide range of optoelectronic devices. This study employs the deposition of an electron transport layer of C60 and an Ag electrode on CH3NH3PbBr3 perovskite crystals to complete a photodetector structure, which exhibits a metal-semiconductor-metal (MSM) type structure. First, CH3NH3PbBr3 perovskite crystals were grown by inverse temperature crystallization (ITC) in a pre-heated circulator oven. This oven was able to supply uniform heat for facilitating the growth of high-quality and large-area crystals. Second, the different growth temperatures for CH3NH3PbBr3 perovskite crystals were investigated. The electrical, optical, and morphological characteristics of the perovskite crystals were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy, and photoluminescence (PL). Finally, the CH3NH3PbBr3 perovskite crystals were observed to form a contact with the Ag/C60 as the photodetector, which revealed a responsivity of 24.5 A/W.
RESUMO
This paper demonstrates that quantum-confined Stark effect (QCSE) within the multiple quantum wells (MQWs) can be suppressed by the growths of InGaN-based light-emitting diodes (LEDs) on the nano-sized patterned c-plane sapphire substrates (PCSSs) with reducing the space. The efficiency droop is also determined by QCSE. As verified by the experimentally measured data and the ray-tracing simulation results, the suppressed efficiency droop for the InGaN-based LED having the nano-sized PCSS with a smaller space of 200 nm can be acquired due to the weaker function of the QCSE within the MQWs as a result of the smaller polarization fields coming from the lower compressive strain in the corresponding epitaxial layers.
RESUMO
Accurate identification of tissue types in surgical margins is essential for ensuring the complete removal of cancerous cells and minimizing the risk of recurrence. The objective of this study was to explore the clinical utility of Raman spectroscopy for the detection of oral squamous cell carcinoma (OSCC) in both tumor and healthy tissues obtained from surgical resection specimens during surgery. This study enrolled a total of 64 patients diagnosed with OSCC. Among the participants, approximately 50% of the cases were classified as the most advanced stage, referred to as T4. Raman experiments were conducted on cryopreserved tissue samples collected from patients diagnosed with OSCC. Prominent spectral regions containing key oral biomarkers were analyzed using the partial least squares-support vector machine (PLS-SVM) method, which is a powerful multivariate analysis technique for discriminant analysis. This approach effectively differentiated OSCC tissue from non-OSCC tissue, achieving a sensitivity of 95.7% and a specificity of 93.3% with 94.7% accuracy. In the current study, Raman analysis of fresh tissue samples showed that OSCC tissues contained significantly higher levels of nucleic acids, proteins, and several amino acids compared to the adjacent healthy tissues. In addition to differentiating between OSCC and non-OSCC tissues, we have also explored the potential of Raman spectroscopy in classifying different stages of OSCC. Specifically, we have investigated the classification of T1, T2, T3, and T4 stages based on their Raman spectra. These findings emphasize the importance of considering both stage and subsite factors in the application of Raman spectroscopy for OSCC analysis. Future work will focus on expanding our tissue sample collection to better comprehend how different subsites influence the Raman spectra of OSCC at various stages, aiming to improve diagnostic accuracy and aid in identifying tumor-free margins during surgical interventions.
RESUMO
Acute kidney injury (AKI) is a common syndrome characterized by various etiologies and pathophysiologic processes that deteriorate kidney function. The aim of this study is to identify potential biomarkers in the urine of non-acute kidney injury (non-AKI) and AKI patients through Raman spectroscopy (RS) to predict the advancement in complications and kidney failure. Selected spectral regions containing prominent peaks of renal biomarkers were subjected to partial least squares linear discriminant analysis (PLS-LDA). This discriminant analysis classified the AKI patients from non-AKI subjects with a sensitivity and specificity of 97% and 100%, respectively. In this study, the RS measurements of urine specimens demonstrated that AKI had significantly higher nitrogenous compounds, porphyrin, tryptophan and neopterin when compared with non-AKI. This study's specific spectral information can be used to design an in vivo RS approach for the detection of AKI diseases.
RESUMO
In this study, we suppressed the parasitic emission caused by electron overflow found in typical ultraviolet B (UVB) and ultraviolet C (UVC) light-emitting diodes (LEDs). The modulation of the p-layer structure and aluminum composition as well as a trade-off in the structure to ensure strain compensation allowed us to increase the p-AlGaN doping efficiency and hole numbers in the p-neutral region. This approach led to greater matching of the electron and hole numbers in the UVB and UVC emission quantum wells. Our UVB LED (sample A) exhibited clear exciton emission, with its peak near 306 nm, and a band-to-band emission at 303 nm. The relative intensity of the exciton emission of sample A decreased as a result of the thermal energy effect of the temperature increase. Nevertheless, sample A displayed its exciton emission at temperatures of up to 368 K. In contrast, our corresponding UVC LED (sample B) only exhibited a Gaussian peak emission at a wavelength of approximately 272 nm.
RESUMO
Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design.
RESUMO
We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 µm and 300 nm/6 µm, respectively, exhibited positive threshold voltages (V th) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.
RESUMO
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
RESUMO
In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade(-1) and 3.62 × 10(11) eV(-1) cm(-2), respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.
RESUMO
High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.
RESUMO
The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 10(7) cm(-2) to 2.6 × 10(7) cm(-2). Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.
RESUMO
This paper aims to investigate the light output power (LOP) of InGaN-based light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) with different symmetry. The GaN epitaxial layers grown on the hexagonal lattice arrangement PSS (HLAPSS) have a lower compressive strain than the ones grown on the square lattice arrangement PSS (SLAPSS). The quantum-confined Stark effect (QCSE) is also affected by the residual compressive strain. Based on the experimentally measured data and the ray tracing simulation results, the InGaN-based LED with the HLAPSS has a higher LOP than the one with the SLAPSS due to the weaker QCSE within multiple-quantum wells (MQWs).
RESUMO
Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.