Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Small ; 20(9): e2307186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857583

RESUMO

Flexible perovskite solar cells (F-PSCs) have emerged as promising alternatives to conventional silicon solar cells for applications in portable and wearable electronics. However, the mechanical stability of inherently brittle perovskite, due to residual lattice stress and ductile fracture formation, poses significant challenges to the long-term photovoltaic performance and device lifetime. In this paper, to address this issue, a dynamic "ligament" composed of supramolecular poly(dimethylsiloxane) polyurethane (DSSP-PPU) is introduced into the grain boundaries of the PSCs, facilitating the release of residual stress and softening of the grain boundaries. Remarkably, this dynamic "ligament" exhibits excellent self-healing properties and enables the healing of cracks in perovskite films at room temperature. The obtained PSCs have achieved power conversion efficiencies of 23.73% and 22.24% for rigid substrates and flexible substrates, respectively, also 17.32% for flexible mini-modules. Notably, the F-PSCs retain nearly 80% of their initial efficiency even after subjecting the F-PSCs to 8000 bending cycles (r = 2 mm), which can further recover to almost 90% of the initial efficiency through the self-healing process. This remarkable improvement in device stability and longevity holds great promise for extending the overall lifetime of F-PSCs.

2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232288

RESUMO

Poly(A) tails are present on almost all eukaryotic mRNAs, and play critical roles in mRNA stability, nuclear export, and translation efficiency. The biosynthesis and shortening of a poly(A) tail are regulated by large multiprotein complexes. However, the molecular mechanisms of these protein machineries still remain unclear. Recent studies regarding the structural and biochemical characteristics of those protein complexes have shed light on the potential mechanisms of polyadenylation and deadenylation. This review summarizes the recent structural studies on pre-mRNA 3'-end processing complexes that initiate the polyadenylation and discusses the similarities and differences between yeast and human machineries. Specifically, we highlight recent biochemical efforts in the reconstitution of the active human canonical pre-mRNA 3'-end processing systems, as well as the roles of RBBP6/Mpe1 in activating the entire machinery. We also describe how poly(A) tails are removed by the PAN2-PAN3 and CCR4-NOT deadenylation complexes and discuss the emerging role of the cytoplasmic poly(A)-binding protein (PABPC) in promoting deadenylation. Together, these recent discoveries show that the dynamic features of these machineries play important roles in regulating polyadenylation and deadenylation.


Assuntos
Poliadenilação , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/genética , Humanos , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
3.
Small ; 17(37): e2102159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331402

RESUMO

Designing cost-effective, highly active, and durable platinum (Pt)-based electrocatalysts is a crucial endeavor in electrochemical hydrogen evolution reaction (HER). Herein, the low-content Pt (0.8 wt%)/tungsten oxide/reduced graphene oxide aerogel (LPWGA) electrocatalyst with excellent HER activity and durability is developed by employing a tungsten oxide/reduced graphene oxide aerogel (WGA) obtained from a facile solvothermal process as a support, followed by electrochemical deposition of Pt nanoparticles. The WGA support with abundant oxygen vacancies and hierarchical pores plays the roles of anchoring the Pt nanoparticles, supplying continuous mass transport and electron transfer channels, and modulating the surface electronic state of Pt, which endow the LPWGA with both high HER activity and durability. Even under a low loading of 0.81 µgPt cm-2 , the LPWGA exhibits a high HER activity with an overpotential of 42 mV at 10 mA cm-2 , an excellent stability under 10000-cycle cyclic voltammetry and 40 h chronopotentiometry at 10 mA cm-2 , a low Tafel slope (30 mV dec-1 ), and a high turnover frequency of 29.05 s-1 at η = 50 mV, which is much superior to the commercial Pt/C and the low-content Pt/reduced graphene oxide aerogel. This work provides a new strategy to design high-performance Pt-based electrocatalysts with greatly reduced use of Pt.

4.
Langmuir ; 37(19): 5979-5985, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961745

RESUMO

Polymer/oxide hybrid thin films, which have excellent electrical and mechanical performance, can be effectively fabricated through the sol-gel process, showing great potential in the future printed electronics. However, gelation of polymer/oxide ink systems can easily occur during a thermal process in which case capillary stress can lead to the crack of printed films due to the long period of stress accumulation. To solve this problem, the effect of different solvent systems on formed PAM/ZrOx hybrid films, which were printed by piezoelectric printing, was studied in this paper, including single solvent systems of glycol and binary solvent systems of glycol and water. The result showed that the microstructure characteristics and mechanical properties of hybrid nanostructures formed in different solvent systems varied significantly, and crack behavior can be regulated by simply adjusting the water volume ratio of the solvent system. The crack formation was significantly inhibited when the water volume ratio reached 25%.

5.
Nanotechnology ; 32(33)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33910189

RESUMO

By adoption of a high permittivity ZrO2capping layer (ZOCL), enhanced ferroelectric properties were achieved in the Hf0.5Zr0.5O2(HZO) thin films. For HZO thin film with 10 Å ZOCL, the 2Prvalue can reach as high as ∼43.1µC cm-2under a sweep electric field of 3 MV cm-1. In addition, a reduced coercive field of 1.5 MV cm-1was observed, which is comparable to that of HZO with metallic CL. Furthermore, the homogeneity of ferroelectric orthorhombic phase in HZO films was observed to be clearly increased, as evidenced by nanoscale piezoelectric force microscopy measurements. These results demonstrate that ZOCL is very favorable for high performance ferroelectric HZO films and their future device applications.

6.
Langmuir ; 36(30): 8655-8667, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633966

RESUMO

Drop-on-demand printing is a noncontact direct patterning and rapid manufacturing printing technology which shows considerable potential in future display manufacturing. Metal oxides are an important kind of functional material in thin-film transistors, which are the core component of active matrix display technology, and thus printing a high-quality metal oxide functional layer is of great importance. In this feature article, we focused on the current progress in one of the foundations of drop-on-demand printing technology-the ink system. We explained the basic principles of a metal oxide ink system for printed electronics and summarized the applications of several kinds of ink systems in thin film transistor printing. Meanwhile, we also summed up problems that printed thin film transistors are facing as well as the corresponding solutions from the aspect of ink systems.

7.
Langmuir ; 34(22): 6413-6419, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750535

RESUMO

Many methods have been reported to prevent the nonuniformity of inkjet printing structures. Most of them depend on the balance of the capillary flow in the printing pattern during the evaporation of the solvent. However, as the relation of evaporation and capillary flow can obviously vary among different ink systems, it is difficult for a method to fit most of the situations. Therefore, it would be a promising way to eliminate any capillary flow before solvent evaporation so that morphology of the printing structure will not be affected by the evaporation behavior of the ink system. In this paper, a novel method of direct inkjet printing of a uniform metal oxide structure is reported. We introduce a polymer polyacrylamide and a surfactant FSO into a sol-gel ink system, and the new ink system can gel from the printing pattern edge to center as temperature increases because of the cross-linking of the polymer chains. By that means, transport of solute molecules and solvent molecules is limited. Meanwhile, the surfactant can ensure that the solute in the central liquid phase deposits uniformly by enhancing the Marangoni flow during the gelation process. The ZrO2 film with uniform morphology was fabricated by drying and annealing the gelating film and afforded a leakage current density of 7.48 × 10-7 A cm-2 at 1 MV and a breakdown field of 1.9 MV cm-1 at an annealing temperature of 250 °C.

8.
Nanotechnology ; 27(16): 165304, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26963676

RESUMO

In this paper, we demonstrate a high-performance surface-enhanced Raman scattering (SERS) substrate based on high-density ordered Ag@Al2O3 nanobowl arrays. By ion beam etching (IBE) the anodized aluminum oxide (AAO) and subsequent Ag coating, ordered Ag@Al2O3 nanobowl arrays were created on the Si substrate. Unlike the 'hot spots' generated between adjacent metallic nanostructures, the Ag@Al2O3 nanobowl introduced 'hot spots' on the metal boundary of its hemispherical cavity. Based on the analysis of SERS signals, the optimized SERS substrate of Ag@Al2O3 nanobowl arrays had both high sensitivity and large-area uniformity. A detection limit as low as 10(-10) M was obtained using chemisorbed p-thiocresol (p-Tc) molecules, and the SERS signal was highly reproducible with a small standard deviation. The method opens up a new way to create highly sensitive SERS sensors with high-density 'hot spots', and it could play an important role in device design and corresponding biological and food safety monitoring applications.

9.
Nanotechnology ; 27(45): 455301, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27698285

RESUMO

The ordering degree of nanostructures is the key to determining the uniformity of surface-enhanced Raman scattering (SERS). However, fabrication of large-area ordered nanostructures remains a challenge, especially with the ultrahigh-density (>1010 cm-2). Here, we report a fabrication of large-area ultrahigh-density ordered Ag@Al2O3/Ag core-shell nanosphere (NS) arrays with tunable nanostructures. The ultrahigh-density (2.8 × 1010 cm-2) ordered NS arrays over a large-area capability (diameter >4.0 cm) enable the uniform SERS signals with the relative standard deviation of less than 5%. The as-fabricated highly reproducible SERS substrate can be applied to detect trace phenolic pollutants in water. This work does not only provide a new route for synthesizing the ultrahigh-density ordered nanostructures, but also create a new class of SERS substrates with high sensitivity and excellent reproducibility.

10.
Nanotechnology ; 26(25): 255706, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26044077

RESUMO

In this work, we demonstrate a silver catalyzed heteroepitaxial growth of gallium phosphide nanowires (GaP NWs) on silicon. The morphology and growth direction of GaP NWs on differently orientated Si substrates were investigated. From crystallographic analysis, we inferred that Ag from catalyst is incorporated into the GaP during the chemical beam epitaxy (CBE) process. Using the PL spectrum and time-resolved emission spectroscopy, the optical properties of Ag-catalyzed GaP NWs were greatly modified, with bandgap transitions in the blue range. The Raman characterizations further confirmed the Ag incorporation into GaP during the growth. From the bandgap calculations, it was deduced that Ag was substituted on the Ga site with bandgap broadening. The in situ Ag-alloying during the growth of Ag-catalyzed GaP NWs greatly modified the band structure of GaP, and could lead to further applications in optoelectronics for low-dimensional GaP-based nanomaterials.

11.
ACS Appl Mater Interfaces ; 16(15): 19271-19282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591357

RESUMO

Inkjet printing artificial synapse is cost-effective but challenging in emulating synaptic dynamics with a sufficient number of effective weight states under ultralow voltage spiking operation. A synaptic transistor gated by inkjet-printed composite dielectric of polar-electret polyvinylpyrrolidone (PVP) and high-k zirconia oxide (ZrOx) is proposed and thus synthesized to solve this issue. Quasi-linear weight update with a large variation margin is obtained through the coupling effect and the facilitation of dipole orientation, which can be attributed to the orderly arranged molecule chains induced by the carefully designed microfluidic flows. Crucial features of biological synapses including long-term plasticity, spike-timing-dependence-plasticity (STDP), "Learning-Experience" behavior, and ultralow energy consumption (<10 fJ/pulse) are successfully implemented on the device. Simulation results exhibit an excellent image recognition accuracy (97.1%) after 15 training epochs, which is the highest for printed synaptic transistors. Moreover, the device sustained excellent endurance against bending tests with radius down to 8 mm. This work presents a very viable solution for constructing the futuristic flexible and low-cost neural systems.

12.
Adv Sci (Weinh) ; : e2401915, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958519

RESUMO

Resistive switching memories have garnered significant attention due to their high-density integration and rapid in-memory computing beyond von Neumann's architecture. However, significant challenges are posed in practical applications with respect to their manufacturing process complexity, a leakage current of high resistance state (HRS), and the sneak-path current problem that limits their scalability. Here, a mild-temperature thermal oxidation technique for the fabrication of low-power and ultra-steep memristor based on Ag/TiOx/SnOx/SnSe2/Au architecture is developed. Benefiting from a self-assembled oxidation layer and the formation/rupture of oxygen vacancy conductive filaments, the device exhibits an exceptional threshold switching behavior with high switch ratio exceeding 106, low threshold voltage of ≈1 V, long-term retention of >104 s, an ultra-small subthreshold swing of 2.5 mV decade-1 and high air-stability surpassing 4 months. By decreasing temperature, the device undergoes a transition from unipolar volatile to bipolar nonvolatile characteristics, elucidating the role of oxygen vacancies migration on the resistive switching process. Further, the 1T1R structure is established between a memristor and a 2H-MoTe2 transistor by the van der Waals (vdW) stacking approach, achieving the functionality of selector and multi-value memory with lower power consumption. This work provides a mild-thermal oxidation technology for the low-cost production of high-performance memristors toward future in-memory computing applications.

13.
ACS Appl Mater Interfaces ; 16(6): 7297-7309, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305856

RESUMO

Serious open-circuit voltage (Voc) loss originating from nonradiative recombination and mismatch energy level at TiO2/perovskite buried interface dramatically limits the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) perovskite solar cells (PSCs) fabricated through low-temperature methods. Here, an ionic liquid (IL) bridge is constructed by introducing 1-butyl-3-methylimidazolium acetate (BMIMAc) IL to treat the TiO2/perovskite buried interface, bilaterally passivate defects and modulate energy alignment. Therefore, the Voc of all-inorganic CsPbIBr2 PSCs modified by BMIMAc (Target-1) significantly increases by 148 mV (from 1.213 to 1.361 V), resulting in the efficiency increasing to 10.30% from 7.87%. Unsealed Target-1 PSCs show outstanding long-term and thermal stability. During the accelerated degradation process (85 °C, RH: 50∼60%), the Target-1 PSCs achieve a champion PCE of 11.94% with a remarkable Voc of 1.403 V, while the control PSC yields a promising PCE of 10.18% with a Voc of 1.319 V. In particular, the Voc of 1.403 V is the highest Voc reported so far in carbon-electrode-based CsPbIBr2 PSCs. Moreover, this strategy enables the modified all-inorganic CsPbI2Br PSCs to achieve a Voc of 1.295 V and a champion efficiency of 15.20%, which is close to the reported highest PCE of 15.48% for all-inorganic CsPbI2Br PSCs prepared by a low-temperature process. This study provides a simple BMIMAc IL bridge to assist bifacial defect passivation and elevate the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) PSCs.

14.
ACS Appl Mater Interfaces ; 15(28): 33643-33653, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37400996

RESUMO

Tin-based perovskite solar cells (TPSCs) have become one of the most prospective photovoltaic materials due to their remarkable optoelectronic properties and relatively low toxicity. Nevertheless, the rapid crystallization of perovskites and the easy oxidization of Sn2+ to Sn4+ make it challenging to fabricate efficient TPSCs. In this work, a piperazine iodide (PI) material with -NH- and -NH2+- bifunctional groups is synthesized and introduced into the PEA0.1FA0.9SnI3-based precursor solution to tune the microstructure, charge transport, and stability of TPSCs. Compared with piperazine (PZ) containing only the -NH- group, the PI additive displays better effects on regulating the microstructure and crystallization, inhibiting Sn2+ oxidation and reducing trap states, resulting in an optimal efficiency of 10.33%. This is substantially better than that of the reference device (6.42%). Benefiting from the fact that PI containing -NH- and -NH2+- groups can passivate both positively charged defects and negatively charged halogen defects, unencapsulated TPSCs modified with the PI material can maintain about 90% of their original efficiency after being kept in a N2 atmosphere for 1000 h, much higher than the value of 47% in reference TPSCs without additives. This work provides a practical method to prepare efficient and stable pure TPSCs.

15.
Nat Commun ; 14(1): 3585, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328514

RESUMO

Reservoir computing (RC) offers efficient temporal information processing with low training cost. All-ferroelectric implementation of RC is appealing because it can fully exploit the merits of ferroelectric memristors (e.g., good controllability); however, this has been undemonstrated due to the challenge of developing ferroelectric memristors with distinctly different switching characteristics specific to the reservoir and readout network. Here, we experimentally demonstrate an all-ferroelectric RC system whose reservoir and readout network are implemented with volatile and nonvolatile ferroelectric diodes (FDs), respectively. The volatile and nonvolatile FDs are derived from the same Pt/BiFeO3/SrRuO3 structure via the manipulation of an imprint field (Eimp). It is shown that the volatile FD with Eimp exhibits short-term memory and nonlinearity while the nonvolatile FD with negligible Eimp displays long-term potentiation/depression, fulfilling the functional requirements of the reservoir and readout network, respectively. Hence, the all-ferroelectric RC system is competent for handling various temporal tasks. In particular, it achieves an ultralow normalized root mean square error of 0.017 in the Hénon map time-series prediction. Besides, both the volatile and nonvolatile FDs demonstrate long-term stability in ambient air, high endurance, and low power consumption, promising the all-ferroelectric RC system as a reliable and low-power neuromorphic hardware for temporal information processing.


Assuntos
Cognição , Potenciação de Longa Duração , Memória de Curto Prazo , Plasticidade Neuronal , Estado Nutricional
16.
Neural Netw ; 160: 202-215, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657333

RESUMO

Nowadays many semantic segmentation algorithms have achieved satisfactory accuracy on von Neumann platforms (e.g., GPU), but the speed and energy consumption have not meet the high requirements of certain edge applications like autonomous driving. To tackle this issue, it is of necessity to design an efficient lightweight semantic segmentation algorithm and then implement it on emerging hardware platforms with high speed and energy efficiency. Here, we first propose an extremely factorized network (EFNet) which can learn multi-scale context information while preserving rich spatial information with reduced model complexity. Experimental results on the Cityscapes dataset show that EFNet achieves an accuracy of 68.0% mean intersection over union (mIoU) with only 0.18M parameters, at a speed of 99 frames per second (FPS) on a single RTX 3090 GPU. Then, to further improve the speed and energy efficiency, we design a memristor-based computing-in-memory (CIM) accelerator for the hardware implementation of EFNet. It is shown by the simulation in DNN+NeuroSim V2.0 that the memristor-based CIM accelerator is ∼63× (∼4.6×) smaller in area, at most ∼9.2× (∼1000×) faster, and ∼470× (∼2400×) more energy-efficient than the RTX 3090 GPU (the Jetson Nano embedded development board), although its accuracy slightly decreases by 1.7% mIoU. Therefore, the memristor-based CIM accelerator has great potential to be deployed at the edge to implement lightweight semantic segmentation models like EFNet. This study showcases an algorithm-hardware co-design to realize real-time and low-power semantic segmentation at the edge.


Assuntos
Condução de Veículo , Semântica , Algoritmos , Simulação por Computador , Aprendizagem
17.
ACS Appl Mater Interfaces ; 15(48): 55753-55764, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38009985

RESUMO

Rhenium disulfide (ReS2) is a promising piezoelectric catalyst due to its excellent electron transfer ability and abundant unsaturated sites. The 1T' phase structure leads to the evolution of ReS2 into a centrosymmetric spatial structure, which restricts its application in piezoelectric catalysis. Herein, we propose a controllable defect engineering strategy to trigger the piezoelectric response of ReS2. The introduction of vacancy defects disrupts the initial centrosymmetric structure, which breaks the piezoelectric polarization bond and generates piezoelectric properties. By using transmission electron microscopy, we characterized it at the atomic scale and determined that vacancy defects contribute to an excellent piezoelectric property through first-principles calculations. Notably, the piezoelectric coefficient of the catalyst with 40 s-etching (ReS2@C-40) is 23.07 pm/V, an order of magnitude greater than other transition metal dichalcogenides. It demonstrated the feasibility of optimizing piezoelectric properties by increasing the conformational asymmetry. Based on its remarkable piezoelectric activity, ReS2@C-40 exhibits highly efficient piezo-photocatalytic synergistic sterilization performance with 99.99% eradication of Escherichia coli and 96.67% of Staphylococcus aureus within 30 min. This pioneering research on the coupling effect of ReS2 in piezoelectric catalysis and photocatalysis provides ideas for the development of piezo-photocatalysts and efficient water purification technologies.

18.
ACS Appl Mater Interfaces ; 15(13): 16902-16909, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966506

RESUMO

Ferroelectrics with negative capacitance effects can amplify the gate voltage in field-effect transistors to achieve low power operation beyond the limits of Boltzmann's Tyranny. The reduction of power consumption depends on the capacitance matching between the ferroelectric layer and gate dielectrics, which can be well controlled by adjusting the negative capacitance effect in ferroelectrics. However, it is a great challenge to experimentally tune the negative capacitance effect. Here, the observation of the tunable negative capacitance effect in ferroelectric KNbO3 through strain engineering is demonstrated. The magnitude of the voltage reduction and negative slope in polarization-electric field (P-E) curves as the symbol of negative capacitance effects can be controlled by imposing various epitaxial strains. The adjustment of the negative curvature region in the polarization-energy landscape under different strain states is responsible for the tunable negative capacitance. Our work paves the way for fabricating low-power devices and further reducing energy consumption in electronics.

19.
ACS Appl Mater Interfaces ; 15(1): 1348-1357, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36544390

RESUMO

The poor interfacial contact and imperfections between the charge transport layer and perovskite film often result in carrier recombination, inefficient charge collection, and inferior stability of perovskite solar cells (PSCs). Therefore, interface engineering is quite crucial to achieve high-performance and stable PSCs. Here, we introduced a cinnamate-functionalized cellulose nanocrystals (Cin-CNCs) interfacial layer between SnO2 and perovskite active layer for enhancing carrier transport ability and crystal growth of perovskite, meanwhile endowing additional functional of long-term device stability against ultraviolet light. The enhancement of interfacial contact between SnO2 and perovskite layer and cascade energy alignment are realized, which is beneficial for obtaining the desirable perovskite film morphology, passivating the interfacial defects, and restraining charge recombination in the SnO2/perovskite interface. An efficiency as high as 23.18%, with an open-circuit voltage of 1.15 V and a significantly enhanced fill factor of 81.07%, is achieved. In addition, the unencapsulated PSCs maintain 75% of the initial PCE after aging for over 1500 h under 25 °C and 30% relative humidity, with better light-soaking stability. These results exhibit the vital role for Cin-CNCs in interfacial modification and constructing high-performance perovskite solar cells.

20.
ACS Appl Mater Interfaces ; 15(38): 45064-45075, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37710994

RESUMO

Tin-based perovskite solar cells (T-PSCs) have become the star photovoltaic products in recent years due to their low environmental toxicity and superior photovoltaic performance. However, the easy oxidation of Sn2+ and the energy level mismatch between the perovskite film and charge transport layer limit its efficiency. In order to regulate the microstructure and photoelectric properties of tin-based perovskite films to enhance the efficiency and stability of T-PSCs, guanidinium bromide (GABr) and organic Lewis-based additive methylamine cyanate (MAOCN) are introduced into the FA0.9PEA0.1SnI3-based perovskite precursor. A series of characterizations show that the interactions between additive molecules and perovskite mutually reconcile to improve the photovoltaic performance of T-PSCs. The introduction of GABr can adjust the band gap of the perovskite film and energy level alignment of T-PSCs. They significantly increase the open-circuit voltage (Voc). The MAOCN material can form hydrogen bonds with SnI2 in the precursor, which can inhibit the oxidation of Sn2+ and significantly improve the short-circuit current density (Jsc). The synergistic modulation of the dual additives reduces the trap-state density and improves photovoltaic performance, resulting in an increased champion efficiency of 9.34 for 5.22% of the control PSCs. The unencapsulated T-PSCs with GABr and MAOCN dual additives prepared in the optimized process can retain more than 110% of their initial efficiency after aging for 1750 h in a nitrogen glovebox, but the control PSCs maintain only 50% of their initial efficiency kept in the same conditions. This work provides a new perspective to further improve the efficiency and stability of T-PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA