Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 167(7): 1672-1674, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984716

RESUMO

In a thought-provoking study, Ocampo et al. show that the cyclic expression of stem cell reprogramming factors in vivo increases the lifespan of a mouse model of premature aging and provides health benefits to chronologically old, normal mice.


Assuntos
Envelhecimento/metabolismo , Reprogramação Celular , Animais , Camundongos
2.
Cell ; 158(3): 673-88, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083876

RESUMO

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.


Assuntos
Células/metabolismo , Código das Histonas , Histonas/metabolismo , Transcrição Gênica , Animais , Inteligência Artificial , Genômica , Humanos , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo
4.
Nature ; 574(7779): 553-558, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645721

RESUMO

Age-associated chronic inflammation (inflammageing) is a central hallmark of ageing1, but its influence on specific cells remains largely unknown. Fibroblasts are present in most tissues and contribute to wound healing2,3. They are also the most widely used cell type for reprogramming to induced pluripotent stem (iPS) cells, a process that has implications for regenerative medicine and rejuvenation strategies4. Here we show that fibroblast cultures from old mice secrete inflammatory cytokines and exhibit increased variability in the efficiency of iPS cell reprogramming between mice. Variability between individuals is emerging as a feature of old age5-8, but the underlying mechanisms remain unknown. To identify drivers of this variability, we performed multi-omics profiling of fibroblast cultures from young and old mice that have different reprogramming efficiencies. This approach revealed that fibroblast cultures from old mice contain 'activated fibroblasts' that secrete inflammatory cytokines, and that the proportion of activated fibroblasts in a culture correlates with the reprogramming efficiency of that culture. Experiments in which conditioned medium was swapped between cultures showed that extrinsic factors secreted by activated fibroblasts underlie part of the variability between mice in reprogramming efficiency, and we have identified inflammatory cytokines, including TNF, as key contributors. Notably, old mice also exhibited variability in wound healing rate in vivo. Single-cell RNA-sequencing analysis identified distinct subpopulations of fibroblasts with different cytokine expression and signalling in the wounds of old mice with slow versus fast healing rates. Hence, a shift in fibroblast composition, and the ratio of inflammatory cytokines that they secrete, may drive the variability between mice in reprogramming in vitro and influence wound healing rate in vivo. This variability may reflect distinct stochastic ageing trajectories between individuals, and could help in developing personalized strategies to improve iPS cell generation and wound healing in elderly individuals.


Assuntos
Envelhecimento/metabolismo , Reprogramação Celular , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Cicatrização , Animais , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/metabolismo , Judeus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Processos Estocásticos , Fatores de Tempo , Cicatrização/efeitos dos fármacos
5.
Genome Res ; 29(4): 697-709, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858345

RESUMO

Aging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here, we generated chromatin maps and transcriptomes from four tissues and one cell type from young, middle-aged, and old mice-yielding 143 high-quality data sets. We focused on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine-learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of data sets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the up-regulation of immune system response pathways such as the interferon response. The up-regulation of the interferon response pathway with age was accompanied by increased transcription and chromatin remodeling at specific endogenous retroviral sequences. Pathways misregulated during mouse aging across tissues, notably innate immune pathways, were also misregulated with aging in other vertebrate species-African turquoise killifish, rat, and humans-indicating common signatures of age across species. To date, our data set represents the largest multitissue epigenomic and transcriptomic data set for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of young tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.


Assuntos
Envelhecimento/genética , Epigênese Genética , Imunidade Inata/genética , Transcriptoma , Animais , Código das Histonas , Inflamação/genética , Interferons/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Mol Cell ; 33(4): 462-71, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19250907

RESUMO

Antisense transcription is a widespread phenomenon in the mammalian genome. It is thought to play a role in regulation of gene expression, but its exact functional significance is largely unknown. We have identified a natural antisense transcript of p53, designated Wrap53, that regulates endogenous p53 mRNA levels and further induction of p53 protein by targeting the 5' untranslated region of p53 mRNA. siRNA knockdown of Wrap53 results in significant decrease in p53 mRNA and suppression of p53 induction upon DNA damage. Conversely, overexpression of Wrap53 increases p53 mRNA and protein levels. Blocking of potential Wrap53/p53 RNA hybrids reduces p53 levels nearly as efficiently as Wrap53 knockdown, strongly suggesting that Wrap53 regulates p53 via Wrap53/p53 RNA interaction. Furthermore, induction of Wrap53 sensitizes cells for p53-dependent apoptosis. This discovery not only reveals a regulatory pathway for controlling p53, but also proposes a general mechanism for antisense-mediated gene regulation in human cells.


Assuntos
Dano ao DNA/genética , RNA Antissenso/metabolismo , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Modelos Genéticos , Chaperonas Moleculares , Dados de Sequência Molecular , Interferência de RNA , RNA Antissenso/genética , RNA Mensageiro/genética , Telomerase/metabolismo
9.
PLoS Biol ; 8(11): e1000521, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21072240

RESUMO

The WRAP53 gene gives rise to a p53 antisense transcript that regulates p53. This gene also encodes a protein that directs small Cajal body-specific RNAs to Cajal bodies. Cajal bodies are nuclear organelles involved in diverse functions such as processing ribonucleoproteins important for splicing. Here we identify the WRAP53 protein as an essential factor for Cajal body maintenance and for directing the survival of motor neuron (SMN) complex to Cajal bodies. By RNA interference and immunofluorescence we show that Cajal bodies collapse without WRAP53 and that new Cajal bodies cannot be formed. By immunoprecipitation we find that WRAP53 associates with the Cajal body marker coilin, the splicing regulatory protein SMN, and the nuclear import receptor importinß, and that WRAP53 is essential for complex formation between SMN-coilin and SMN-importinß. Furthermore, depletion of WRAP53 leads to accumulation of SMN in the cytoplasm and prevents the SMN complex from reaching Cajal bodies. Thus, WRAP53 mediates the interaction between SMN and associated proteins, which is important for nuclear targeting of SMN and the subsequent localization of the SMN complex to Cajal bodies. Moreover, we detect reduced WRAP53-SMN binding in patients with spinal muscular atrophy, which is the leading genetic cause of infant mortality worldwide, caused by mutations in SMN1. This suggests that loss of WRAP53-mediated SMN trafficking contributes to spinal muscular atrophy.


Assuntos
Sobrevivência Celular/fisiologia , Corpos Enovelados/fisiologia , Neurônios Motores/citologia , Telomerase/fisiologia , Linhagem Celular , Humanos , Chaperonas Moleculares , Atrofia Muscular Espinal/metabolismo , Proteínas do Complexo SMN/metabolismo
10.
Proc Natl Acad Sci U S A ; 106(37): 15756-61, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805223

RESUMO

The p53 target gene Wig-1 encodes a double-stranded-RNA-binding zinc finger protein. We show here that Wig-1 binds to p53 mRNA and stabilizes it through an AU-rich element (ARE) in the 3' UTR of the p53 mRNA. This effect is mirrored by enhanced p53 protein levels in both unstressed cells and cells exposed to p53-activating stress agents. Thus, the p53 target Wig-1 is a previously undescribed ARE-regulating protein that acts as a positive feedback regulator of p53, with implications both for the steady-state levels of p53 and for the p53 stress response. Our data reveal a previously undescribed link between the tumor suppressor p53 and posttranscriptional gene regulation via AREs in mRNA.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas , Animais , Composição de Bases , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Retroalimentação Fisiológica , Genes p53 , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Mensageiro/química , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Estresse Fisiológico
11.
Ultrasound Med Biol ; 47(12): 3480-3490, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34507874

RESUMO

A change in elastin and collagen content is indicative of damage caused by hypertension, which changes the non-linear behavior of the vessel wall. This study was aimed at investigating the feasibility of monitoring the non-linear material behavior in an angiotensin II hypertensive mice model. Aortas from 13 hypertensive mice were imaged with pulse wave imaging (PWI) over 4 wk using a 40-MHz linear array. The pulse wave velocity was estimated using two wave features: (i) the maximum axial acceleration of the foot (PWVdia) and (ii) the maximum axial acceleration of the dicrotic notch (PWVend-sys). The Bramwell-Hill equation was used to derive the compliance at diastolic and end-systolic pressure. This study determined the potential of PWI in a hypertensive mouse model to image and quantify the non-linear material behavior in vivo. End-systolic compliance could differentiate between the sham and angiotensin II groups, whereas diastolic compliance could not, indicating that PWI can detect early collagen-dominated remodeling.


Assuntos
Aorta Abdominal , Hipertensão , Animais , Aorta Abdominal/diagnóstico por imagem , Pressão Sanguínea , Estudos de Viabilidade , Camundongos , Análise de Onda de Pulso
12.
Cancer Immunol Res ; 9(10): 1141-1157, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376502

RESUMO

The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1+ tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1-IL15m, demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1-IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1-IL15m preferentially targeted CD8+ TILs and single-cell RNA-sequencing analyses revealed that anti-mPD1-IL15m treatment induced the expansion of an exhausted CD8+ TIL cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1-IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1-IL15m on primary human TILs from patients with cancer was also evaluated. Anti-hPD1-IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, our findings showed that anti-PD1-IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD1+ TILs.See related Spotlight by Felices and Miller, p. 1110.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/terapia , Imunoterapia , Interleucina-15/uso terapêutico , Melanoma Experimental/terapia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico
13.
Carcinogenesis ; 31(6): 1045-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20427345

RESUMO

The p53 tumor suppressor gene is inactivated by point mutation in a large fraction of human tumors, allowing evasion of apoptosis and tumor progression. p53 mutation is often associated with increased resistance to therapy. Pharmacological reactivation of mutant p53 is an attractive therapeutic strategy. We previously identified p53 reactivation and induction of massive apoptosis, a low-molecular weight compound that suppresses the growth of cancer cells in a mutant p53-dependent manner. Here, we report the identification and characterization of an extract from the terrestrial plant Brachylaena ramiflora (Asteraceae) that preferentially induces apoptosis in human tumor cells expressing mutant p53. Further analysis of this extract and identification of active compounds may provide novel structural scaffolds for the development of mutant p53-targeting anticancer drugs.


Assuntos
Apoptose/efeitos dos fármacos , Asteraceae/química , Mutação , Extratos Vegetais/farmacologia , Proteína Supressora de Tumor p53/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Citometria de Fluxo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Nat Cell Biol ; 21(1): 32-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602763

RESUMO

Ageing is associated with the functional decline of all tissues and a striking increase in many diseases. Although ageing has long been considered a one-way street, strategies to delay and potentially even reverse the ageing process have recently been developed. Here, we review four emerging rejuvenation strategies-systemic factors, metabolic manipulations, senescent cell ablation and cellular reprogramming-and discuss their mechanisms of action, cellular targets, potential trade-offs and application to human ageing.


Assuntos
Envelhecimento/fisiologia , Reprogramação Celular/fisiologia , Senescência Celular/fisiologia , Rejuvenescimento/fisiologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Longevidade/fisiologia , Modelos Biológicos
16.
Sci Rep ; 8(1): 17747, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30532037

RESUMO

Lipidomics - the global assessment of lipids - can be performed using a variety of mass spectrometry (MS)-based approaches. However, choosing the optimal approach in terms of lipid coverage, robustness and throughput can be a challenging task. Here, we compare a novel targeted quantitative lipidomics platform known as the Lipidyzer to a conventional untargeted liquid chromatography (LC)-MS approach. We find that both platforms are efficient in profiling more than 300 lipids across 11 lipid classes in mouse plasma with precision and accuracy below 20% for most lipids. While the untargeted and targeted platforms detect similar numbers of lipids, the former identifies a broader range of lipid classes and can unambiguously identify all three fatty acids in triacylglycerols (TAG). Quantitative measurements from both approaches exhibit a median correlation coefficient (r) of 0.99 using a dilution series of deuterated internal standards and 0.71 using endogenous plasma lipids in the context of aging. Application of both platforms to plasma from aging mouse reveals similar changes in total lipid levels across all major lipid classes and in specific lipid species. Interestingly, TAG is the lipid class that exhibits the most changes with age, suggesting that TAG metabolism is particularly sensitive to the aging process in mice. Collectively, our data show that the Lipidyzer platform provides comprehensive profiling of the most prevalent lipids in plasma in a simple and automated manner.


Assuntos
Envelhecimento/sangue , Envelhecimento/metabolismo , Lipídeos/sangue , Plasma/metabolismo , Animais , Cromatografia Líquida/métodos , Estudos de Avaliação como Assunto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem/métodos , Triglicerídeos/sangue
17.
Science ; 359(6381): 1277-1283, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29590078

RESUMO

In the adult brain, the neural stem cell (NSC) pool comprises quiescent and activated populations with distinct roles. Transcriptomic analysis revealed that quiescent and activated NSCs exhibited differences in their protein homeostasis network. Whereas activated NSCs had active proteasomes, quiescent NSCs contained large lysosomes. Quiescent NSCs from young mice accumulated protein aggregates, and many of these aggregates were stored in large lysosomes. Perturbation of lysosomal activity in quiescent NSCs affected protein-aggregate accumulation and the ability of quiescent NSCs to activate. During aging, quiescent NSCs displayed defects in their lysosomes, increased accumulation of protein aggregates, and reduced ability to activate. Enhancement of the lysosome pathway in old quiescent NSCs cleared protein aggregates and ameliorated the ability of quiescent NSCs to activate, allowing them to regain a more youthful state.


Assuntos
Envelhecimento/fisiologia , Divisão Celular , Senescência Celular , Lisossomos/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
18.
EMBO Mol Med ; 5(7): 1067-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23776131

RESUMO

SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Mama/patologia , Proteína Quinase CDC2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Sequência de Aminoácidos , Mama/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Fosforilação , Prognóstico , Regiões Promotoras Genéticas , Proteólise , Proteínas Ligases SKP Culina F-Box/análise , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais , Análise de Sobrevida , Ativação Transcricional , Ubiquitinação
19.
Curr Opin Cell Biol ; 24(6): 744-56, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23146768

RESUMO

Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and offers new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity.


Assuntos
Envelhecimento , Reprogramação Celular , Senescência Celular , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Senescência Celular/genética , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Longevidade , Rejuvenescimento
20.
Int J Oncol ; 37(1): 15-20, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20514392

RESUMO

The multiple tyrosine kinase inhibitor sorafenib has recently demonstrated clinical effects in patients with androgen-independent prostate cancer. These observations provided the rational for investigating the anti-tumoral properties of this compound on prostate cancer cell lines at the molecular level. Two hormone refractory (PC3 and DU145) and one hormone responsive cell line (22Rv1) were used. By use of a panel of cell biology techniques such as immunoblotting, flow cytometry and immunocytochemistry, effects on the MAPK pathway and induction of apoptosis and autophagy were evaluated. We demonstrate that sorafenib reduced cell viability in a dose-dependent manner, induced apoptosis and inactivated the MAPK pathway. Moreover, we show for the first time, that sorafenib treatment of prostate cancer cells also induces cellular autophagy. This feature is in accordance with the anticancer potential of sorafenib and adds another important effector mechanism of this compound. These observations may open potentially interesting treatment combinations that may augment the effect of sorafenib, either by drugs that promote autophagy such as the rapalogues, or by combining sorafenib with compounds that specifically inhibit the autophagic process.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Carcinoma/patologia , Neoplasias da Próstata/patologia , Piridinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma/genética , Carcinoma/metabolismo , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes bcl-2/fisiologia , Humanos , Masculino , Niacinamida/análogos & derivados , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Compostos de Fenilureia , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Sorafenibe , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA