Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biomed Inform ; 148: 104552, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995844

RESUMO

Pangenomics was originally defined as the problem of comparing the composition of genes into gene families within a set of bacterial isolates belonging to the same species. The problem requires the calculation of sequence homology among such genes. When combined with metagenomics, namely for human microbiome composition analysis, gene-oriented pangenome detection becomes a promising method to decipher ecosystem functions and population-level evolution. Established computational tools are able to investigate the genetic content of isolates for which a complete genomic sequence is available. However, there is a plethora of incomplete genomes that are available on public resources, which only a few tools may analyze. Incomplete means that the process for reconstructing their genomic sequence is not complete, and only fragments of their sequence are currently available. However, the information contained in these fragments may play an essential role in the analyses. Here, we present PanDelos-frags, a computational tool which exploits and extends previous results in analyzing complete genomes. It provides a new methodology for inferring missing genetic information and thus for managing incomplete genomes. PanDelos-frags outperforms state-of-the-art approaches in reconstructing gene families in synthetic benchmarks and in a real use case of metagenomics. PanDelos-frags is publicly available at https://github.com/InfOmics/PanDelos-frags.


Assuntos
Genômica , Microbiota , Humanos , Ecossistema , Genoma , Genômica/métodos , Metagenômica/métodos , Software , Microbiota/genética
2.
Gene ; 915: 148422, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570058

RESUMO

The surge in human whole-genome sequencing data has facilitated the study of non-coding region variations, yet understanding their biological significance remains a challenge. We used a computational workflow to assess the regulatory potential of non-coding variants, with a particular focus on the Angiotensin Converting Enzyme 2 (ACE2) gene. This gene is crucial in physiological processes and serves as the entry point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 19 (COVID-19). In our analysis, using data from the gnomAD population database and functional annotation, we identified 17 significant Single Nucleotide Variants (SNVs) in ACE2, particularly in its enhancers, promoters, and 3' untranslated regions (UTRs). We found preliminary evidence supporting the regulatory impact of some of these variants on ACE2 expression. Our detailed examination of two SNVs, rs147718775 and rs140394675, in the ACE2 promoter revealed that these co-occurring SNVs, when mutated, significantly enhance promoter activity, suggesting a possible increase in specific ACE2 isoform expression. This method proves effective in identifying and interpreting impactful non-coding variants, aiding in further studies and enhancing understanding of molecular bases of monogenic and complex traits.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Regiões 3' não Traduzidas/genética , Variação Genética
3.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065032

RESUMO

Growing evidence suggests that alterations in the gut microbiome impact the development of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD often requires the use of immunosuppressant drugs and biologic therapies to facilitate clinical remission and mucosal healing, some patients do not benefit from these drugs, and the reasons for this remain poorly understood. Despite advancements, there is still a need to develop biomarkers to help predict prognosis and guide treatment decisions. The aim of this study was to investigate the gut microbiome of IBD patients using biologics to identify microbial signatures associated with responses, following standard accepted criteria. Microbiomes in 66 stool samples from 39 IBD patients, comprising 20 CD and 19 UC patients starting biologic therapies, and 29 samples from healthy controls (HCs) were prospectively analyzed via NGS and an ensemble of metagenomics analysis tools. At baseline, differences were observed in alpha and beta metrics among patients with CD, UC and HC, as well as between the CD and UC groups. The degree of dysbiosis was more pronounced in CD patients, and those with dysbiosis exhibited a limited response to biological drugs. Pairwise differential abundance analyses revealed an increasing trend in the abundance of an unannotated genus from the Clostridiales order, Gemmiger genus and an unannotated genus from the Rikenellaceae family, which were consistently identified in greater abundance in HC. The Clostridium genus was more abundant in CD patients. At baseline, a greater abundance of the Odoribacter and Ruminococcus genera was found in IBD patients who responded to biologics at 14 weeks, whereas a genus identified as SMB53 was more enriched at 52 weeks. The Collinsella genus showed a higher prevalence among non-responder IBD patients. Additionally, a greater abundance of an unclassified genus from the Barnesiellaceae family and one from Lachnospiraceae was observed in IBD patients responding to Vedolizumab at 14 weeks. Our analyses showed global microbial diversity, mainly in CD. This indicated the absence or depletion of key taxa responsible for producing short-chain fatty acids (SCFAs). We also identified an abundance of pathobiont microbes in IBD patients at baseline, particularly in non-responders to biologic therapies. Furthermore, specific bacteria-producing SCFAs were abundant in patients responding to biologics and in those responding to Vedolizumab.

4.
Clin Epigenetics ; 16(1): 96, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033117

RESUMO

BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Epigênese Genética , Sirtuínas , Sirtuínas/genética , Sirtuínas/metabolismo , Camundongos , Adipócitos/metabolismo , Animais , Epigênese Genética/genética , Adipogenia/genética , Humanos , Mutação , Obesidade/genética , Obesidade/metabolismo , Processamento de Proteína Pós-Traducional/genética , Histonas/metabolismo , Histonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA