RESUMO
PARP enzymes are increasingly taking on important roles beyond DNA repair. Huang et al. (2020b) report how the NAD+-dependent ADP-ribosylation of histone H2B by PARP-1 in complex with a metabolic enzyme suppresses the phosphorylation of an adjacent residue, impacting adipogenesis.
Assuntos
Histonas , Inibidores de Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Adipogenia , Epigênese Genética , Humanos , Obesidade , Fosforilação , Poli(ADP-Ribose) PolimerasesRESUMO
Multicellular organisms depend on cell-type-specific division of labor for survival. Specific cell types have their unique developmental program and respond differently to environmental challenges, yet are orchestrated by the same genetic blueprint. A key challenge in biology is thus to understand how genes are expressed in the right place, at the right time, and to the right level. Further, this exquisite control of gene expression is perturbed in many diseases. As a consequence, coordinated physiological responses to the environment are compromised. Recently, innovative tools have been developed that are able to capture genome-wide gene expression using cell-type-specific approaches. These novel techniques allow us to understand gene regulation in vivo with unprecedented resolution and give us mechanistic insights into how multicellular organisms adapt to changing environments. In this article, we discuss the considerations needed when designing your own cell-type-specific experiment from the isolation of your starting material through selecting the appropriate controls and validating the data.
Assuntos
Perfilação da Expressão Gênica/métodos , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Especificidade de Órgãos/genética , Análise de Célula Única/métodos , Animais , Humanos , Reprodutibilidade dos TestesRESUMO
Our ability to overcome the challenges behind metabolic disorders will require a detailed understanding of the regulation of responses to nutrition. The Creb3 transcription factor family appears to have a unique regulatory role that links cellular secretory capacity with development, nutritional state, infection, and other stresses. This role in regulating individual secretory capacity genes could place this family of transcription factors at an important regulatory intersection mediating an animal's responses to nutrients and other environmental challenges. Interestingly, in both humans and mice, individuals with mutations in Creb3L3/CrebH, one of the Creb3 family members, exhibit hypertriglyceridemia (HTG) thus linking this transcription factor to lipid metabolism. We are beginning to understand how Creb3L3 and related family members are regulated and to dissect the potential redundancy and cross talk between distinct family members, thereby mediating both healthy and pathological responses to the environment. Here, we review the current knowledge on the regulation of Creb3 family transcription factor activity, their target genes, and their role in metabolic disease.
RESUMO
Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field.
Assuntos
Comportamento Animal/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica , Memória/fisiologia , Modelos Neurológicos , Corpos Pedunculados/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Adenilil Ciclases/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Aprendizagem/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologiaRESUMO
Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.
Assuntos
Aprendizagem da Esquiva , Drosophila melanogaster/fisiologia , Eletrochoque , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Animais , Elementos de DNA Transponíveis , Deleção de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Locomoção , Mutagênese Insercional , Reprodutibilidade dos TestesRESUMO
Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP), a broadly applicable biochemical procedure. RNA polymerase II (Pol II) CAST-ChIP identifies ~1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.