Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 79(5): 1158-1179, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811413

RESUMO

Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.


Assuntos
Hepatopatias , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Transcriptoma , Metabolômica
2.
Nucleic Acids Res ; 51(D1): D877-D889, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36200827

RESUMO

Prior knowledge of perturbation data can significantly assist in inferring the relationship between chemical perturbations and their specific transcriptional response. However, current databases mostly contain cancer cell lines, which are unsuitable for the aforementioned inference in non-cancer cells, such as cells related to non-cancer disease, immunology and aging. Here, we present ChemPert (https://chempert.uni.lu/), a database consisting of 82 270 transcriptional signatures in response to 2566 unique perturbagens (drugs, small molecules and protein ligands) across 167 non-cancer cell types, as well as the protein targets of 57 818 perturbagens. In addition, we develop a computational tool that leverages the non-cancer cell datasets, which enables more accurate predictions of perturbation responses and drugs in non-cancer cells compared to those based onto cancer databases. In particular, ChemPert correctly predicted drug effects for treating hepatitis and novel drugs for osteoarthritis. The ChemPert web interface is user-friendly and allows easy access of the entire datasets and the computational tool, providing valuable resources for both experimental researchers who wish to find datasets relevant to their research and computational researchers who need comprehensive non-cancer perturbation transcriptomics datasets for developing novel algorithms. Overall, ChemPert will facilitate future in silico compound screening for non-cancer cells.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Algoritmos , Ligantes
3.
Hepatology ; 77(5): 1654-1669, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921199

RESUMO

BACKGROUND AND AIMS: Recent studies suggest that mitochondrial dysfunction promotes progression to NASH by aggravating the gut-liver status. However, the underlying mechanism remains unclear. Herein, we hypothesized that enhanced mitochondrial activity might reshape a specific microbiota signature that, when transferred to germ-free (GF) mice, could delay NASH progression. APPROACH AND RESULTS: Wild-type and methylation-controlled J protein knockout (MCJ-KO) mice were fed for 6 weeks with either control or a choline-deficient, L-amino acid-defined, high-fat diet (CDA-HFD). One mouse of each group acted as a donor of cecal microbiota to GF mice, who also underwent the CDA-HFD model for 3 weeks. Hepatic injury, intestinal barrier, gut microbiome, and the associated fecal metabolome were then studied. Following 6 weeks of CDA-HFD, the absence of methylation-controlled J protein, an inhibitor of mitochondrial complex I activity, reduced hepatic injury and improved gut-liver axis in an aggressive NASH dietary model. This effect was transferred to GF mice through cecal microbiota transplantation. We suggest that the specific microbiota profile of MCJ-KO, characterized by an increase in the fecal relative abundance of Dorea and Oscillospira genera and a reduction in AF12 , Allboaculum , and [ Ruminococcus ], exerted protective actions through enhancing short-chain fatty acids, nicotinamide adenine dinucleotide (NAD + ) metabolism, and sirtuin activity, subsequently increasing fatty acid oxidation in GF mice. Importantly, we identified Dorea genus as one of the main modulators of this microbiota-dependent protective phenotype. CONCLUSIONS: Overall, we provide evidence for the relevance of mitochondria-microbiota interplay during NASH and that targeting it could be a valuable therapeutic approach.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
4.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
5.
PLoS Biol ; 19(1): e3001062, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395408

RESUMO

Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.


Assuntos
Borrelia burgdorferi/imunologia , Cardiomiopatias/etiologia , Memória Imunológica , Doença de Lyme/imunologia , Macrófagos/fisiologia , Animais , Cardiomiopatias/imunologia , Cardiomiopatias/microbiologia , Cardiomiopatias/patologia , Células Cultivadas , Endocardite Bacteriana/complicações , Endocardite Bacteriana/imunologia , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Feminino , Células HEK293 , Coração/microbiologia , Humanos , Doença de Lyme/patologia , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/microbiologia , Miócitos Cardíacos/patologia , Células RAW 264.7
6.
J Hepatol ; 79(4): 989-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302584

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of ß-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Proteômica , Epigênese Genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metilação de DNA , Carcinogênese/genética
7.
Hepatology ; 75(3): 550-566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510498

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Assuntos
Fígado Gorduroso/metabolismo , Regeneração Hepática/fisiologia , Ativação de Macrófagos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Chaperonas Moleculares , Traumatismo por Reperfusão/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Inativação Gênica/fisiologia , Rejeição de Enxerto/prevenção & controle , Fígado/metabolismo , Transplante de Fígado/métodos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Traumatismo por Reperfusão/prevenção & controle
8.
J Hepatol ; 75(1): 34-45, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33571553

RESUMO

BACKGROUND & AIMS: Perturbations of intracellular magnesium (Mg2+) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg2+ across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). METHODS: Serum Mg2+ levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. RESULTS: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg2+ levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg2+ accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. CONCLUSIONS: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg2+ transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. LAY SUMMARY: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hepatócitos/metabolismo , Magnésio , Hepatopatia Gordurosa não Alcoólica , Animais , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Descoberta de Drogas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Magnésio/sangue , Magnésio/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G603-G616, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585619

RESUMO

In patients, advanced cirrhosis only regresses partially once the etiological agent is withdrawn. Animal models for advanced cirrhosis regression are missing. Lifestyle interventions (LIs) have been shown to improve steatosis, inflammation, fibrosis, and portal pressure (PP) in liver disease. We aimed at characterizing cirrhosis regression after etiological agent removal in experimental models of advanced cirrhosis and to study the impact of different LI on it. Advanced cirrhosis was induced in rats either by carbon tetrachloride (CCl4) or by thioacetamide (TAA) administration. Systemic and hepatic hemodynamics, liver fibrosis, hepatic stellate cell (HSC) activation, hepatic macrophage infiltration, and metabolic profile were evaluated after 48 h, 4 wk or 8 wk of etiological agent removal. The impact of LI consisting in caloric restriction (CR) or moderate endurance exercise (MEE) during the 8-wk regression process was analyzed. The effect of MEE was also evaluated in early cirrhotic and in healthy rats. A significant reduction in portal pressure (PP), liver fibrosis, and HSC activation was observed during regression. However, these parameters remained above those in healthy animals. During regression, animals markedly worsened their metabolic profile. CR although preventing those metabolic disturbances did not further reduce PP, hepatic fibrosis, or HSC activation. MEE also prevented metabolic disturbances, without enhancing, but even attenuating the reduction of PP, hepatic fibrosis, and HSC activation achieved by regression. MEE also worsened hepatic fibrosis in early-TAA cirrhosis and in healthy rats.NEW & NOTEWORTHY We have developed two advanced cirrhosis regression experimental models with persistent relevant fibrosis and portal hypertension and an associated deteriorated metabolism that mimic what happens in patients. LI, despite improving metabolism, did not enhance the regression process in our cirrhotic models. CR did not further reduce PP, hepatic fibrosis, or HSC activation. MEE exhibited a profibrogenic effect in the liver blunting cirrhosis regression. One of the potential explanations of this worsening could be ammonia accumulation.


Assuntos
Restrição Calórica , Doença Hepática Induzida por Substâncias e Drogas/terapia , Ingestão de Energia , Terapia por Exercício , Estilo de Vida Saudável , Cirrose Hepática Experimental/terapia , Fígado/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Hipertensão Portal/terapia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Resistência Física , Ratos Wistar , Comportamento de Redução do Risco , Tioacetamida , Fatores de Tempo
10.
Hepatology ; 69(2): 699-716, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229970

RESUMO

Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRToe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRThep-/- ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRToe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2-/- ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRToe mice showed exacerbated parenchymal injury whereas SIRThep-/- mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRToe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRThep-/- hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRToe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage.


Assuntos
Colestase/metabolismo , Sirtuína 1/metabolismo , Animais , Ácidos e Sais Biliares/biossíntese , Estudos de Casos e Controles , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Camundongos
12.
Hepatology ; 68(3): 1010-1024, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29604220

RESUMO

Recent reports suggested that direct acting antivirals (DAAs) might favor hepatocellular carcinoma (HCC). In study 1, we studied the proangiogenic liver microenvironment in 242 DAA-treated chronic hepatitis C patients with advanced fibrosis. Angiopoietin-2 (ANGPT2) expression was studied in tissue (cirrhotic and/or neoplastic) from recurrent, de novo, nonrecurrent HCC, or patients never developing HCC. Circulating ANGPT2,vascular endothelial growth factor (VEGF), and C-reactive protein (CRP) were also measured. In study 2, we searched for factors associated with de novo HCC in 257 patients with cirrhosis of different etiologies enrolled in a dedicated prospective study. Thorough biochemical, clinical, hemodynamic, endoscopic, elastographic, and echo-Doppler work-up was performed in both studies. In study 1, no patients without cirrhosis developed HCC. Of 183 patients with cirrhosis, 14 of 28 (50.0%) with previous HCC recurred whereas 21 of 155 (13.5%) developed de novo HCC. Patients with recurrent and de novo HCCs had significantly higher liver fibrosis (LF) scores, portal pressure, and systemic inflammation than nonrecurrent HCC or patients never developing HCC. In recurrent/de novo HCC patients, tumor and nontumor ANGPT2 showed an inverse relationship with portal vein velocity (PVv; r = -0.412, P = 0.037 and r = -0.409, P = 0.047 respectively) and a positive relationship with liver stiffness (r = 0.526, P = 0.007; r = 0.525, P = 0.003 respectively). Baseline circulating VEGF and cirrhotic liver ANGPT2 were significantly related (r = 0.414, P = 0.044). VEGF increased during DAAs, remaining stably elevated at 3-month follow-up, when it significantly related with serum ANGPT2 (r = 0.531, P = 0.005). ANGPT2 expression in the primary tumor or in cirrhotic tissue before DAAs was independently related with risk of HCC recurrence (odds ratio [OR], 1.137; 95% confidence interval [CI], 1.044-1.137; P = 0.003) or occurrence (OR, 1.604; 95% CI, 1.080-2.382; P = 0.019). In study 2, DAA treatment (OR, 4.770; 95% CI, 1.395-16.316; P = 0.013) and large varices (OR, 3.857; 95% CI, 1.127-13.203; P = 0.032) were independent predictors of de novo HCC. CONCLUSION: Our study indicates that DAA-mediated increase of VEGF favors HCC recurrence/occurrence in susceptible patients, that is, those with more severe fibrosis and splanchnic collateralization, who already have abnormal activation in liver tissues of neo-angiogenetic pathways, as shown by increased ANGPT2. (Hepatology 2018; 00:000-000).


Assuntos
Angiopoietina-2/sangue , Antivirais/efeitos adversos , Carcinoma Hepatocelular/induzido quimicamente , Hepatite C/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Recidiva Local de Neoplasia/induzido quimicamente , Idoso , Carcinoma Hepatocelular/sangue , Feminino , Hepatite C/complicações , Humanos , Hipertensão Portal/complicações , Cirrose Hepática/complicações , Cirrose Hepática/virologia , Neoplasias Hepáticas/sangue , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Neovascularização Patológica , Estudos Prospectivos , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/sangue
13.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861664

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the main causes of chronic liver disease worldwide. NAFLD comprises a group of conditions characterized by the accumulation of hepatic lipids that can eventually lead to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), the fifth most common cancer type with a poor survival rate. In this context, several works have pointed out perturbations in lipid metabolism and, particularly, changes in bioactive sphingolipids, as a hallmark of NAFLD and derived HCC. In the present work, we have reviewed existing literature about sphingolipids and the development of NAFLD and NAFLD-derived HCC. During metabolic syndrome, considered a risk factor for steatosis development, an increase in ceramide and sphigosine-1-phosphate (S1P) have been reported. Likewise, other reports have highlighted that increased sphingomyelin and ceramide content is observed during steatosis and NASH. Ceramide also plays a role in liver fibrosis and cirrhosis, acting synergistically with S1P. Finally, during HCC, metabolic fluxes are redirected to reduce cellular ceramide levels whilst increasing S1P to support tumor growth.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ceramidas/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esfingolipídeos/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiologia , Progressão da Doença , Detecção Precoce de Câncer , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Fatores de Risco
14.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845649

RESUMO

The cyclin and cystathionine ß-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica
15.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842432

RESUMO

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Humanos , Magnésio/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Relação Estrutura-Atividade
17.
J Biol Chem ; 292(3): 786-801, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27899452

RESUMO

Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine ß-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas Imediatamente Precoces/química , Magnésio/química , Proteínas Oncogênicas/química , Proteínas Tirosina Fosfatases/química , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Magnésio/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
18.
Gastroenterology ; 152(6): 1449-1461.e7, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132890

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. METHODS: We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. RESULTS: Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. CONCLUSIONS: In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients.


Assuntos
Metabolismo dos Lipídeos , Metaboloma , Metionina Adenosiltransferase/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/classificação , Adulto , Animais , Biomarcadores/sangue , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo
20.
Gut ; 65(5): 861-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666192

RESUMO

OBJECTIVE: The biological heterogeneity of hepatocellular carcinoma (HCC) makes prognosis difficult. We translate the results of a genome-wide high-throughput analysis into a tool that accurately predicts at presentation tumour growth and survival of patients with HCC. DESIGN: Ultrasound surveillance identified HCC in 78 (training set) and 54 (validation set) consecutive patients with cirrhosis. Patients underwent two CT scans 6 weeks apart (no treatment in-between) to determine tumour volumes (V0 and V1) and calculate HCC doubling time. Baseline-paired HCC and surrounding tissue biopsies for microarray study (Agilent Whole Human Genome Oligo Microarrays) were also obtained. Predictors of survival were assessed by multivariate Cox model. RESULTS: Calculated tumour doubling times ranged from 30 to 621 days (mean, 107±91 days; median, 83 days) and were divided into quartiles: ≤53 days (n=19), 54-82 days (n=20), 83-110 days (n=20) and ≥111 days (n=19). Median survival according to doubling time was significantly lower for the first quartile versus the others (11 vs 41 months, 42, and 47 months, respectively) (p<0.0001). A five-gene transcriptomic hepatic signature including angiopoietin-2 (ANGPT2), delta-like ligand 4 (DLL4), neuropilin (NRP)/tolloid (TLL)-like 2 (NETO2), endothelial cell-specific molecule-1 (ESM1), and nuclear receptor subfamily 4, group A, member 1 (NR4A1) was found to accurately identify rapidly growing HCCs of the first quartile (ROC AUC: 0.961; 95% CI 0.919 to 1.000; p<0.0001) and to be an independent factor for mortality (HR: 3.987; 95% CI 1.941 to 8.193, p<0.0001). CONCLUSIONS: The hepatic five-gene signature was able to predict HCC growth in individual patient and the consequent risk of death. This implies a role of this molecular tool in the future therapeutic management of patients with HCC. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT01657695.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/mortalidade , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Estudos Prospectivos , Taxa de Sobrevida , Fatores de Tempo , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA