Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(18): 2832-2841, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37387247

RESUMO

Neurons within the cerebellum form temporal-spatial connections through the cerebellum, and the entire brain. Organoid models provide an opportunity to model the early differentiation of the developing human cerebellum, which is difficult to study in vivo, and affords the opportunity to study neurodegenerative and neurodevelopmental diseases of the cerebellum. Previous cerebellar organoid models focused on early neuron generation and single cell activity. Here, we modify previous protocols to generate more mature cerebellar organoids that allow for the establishment of several classes of mature neurons during cerebellar differentiation and development, including the establishment of neural networks during whole-organoid maturation. This will provide a means to study the generation of several more mature cerebellar cell types, including Purkinje cells, granule cells and interneurons expression as well as neuronal communication for biomedical, clinical and pharmaceutical applications.


Assuntos
Cerebelo , Neurônios , Humanos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Neurogênese , Organoides
2.
Semin Cell Dev Biol ; 114: 11-19, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024497

RESUMO

The translation of information encoded in the DNA into functional proteins is one of the tenets of cellular biology. Cell survival and function depend on the tightly controlled processes of transcription and translation. Growing evidence suggests that dysregulation in mRNA translation plays an important role in the pathogenesis of several neurodevelopmental diseases, such as autism spectrum disorder (ASD) and fragile X syndrome (FXS) as well as neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review, we provide an overview of mRNA translation and its modes of regulation that have been implicated in neurological disease.


Assuntos
Doenças do Sistema Nervoso/genética , RNA Mensageiro/genética , Animais , Humanos , Camundongos
3.
Analyst ; 147(23): 5409-5418, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36300548

RESUMO

Paracrine signaling is challenging to study in vitro, as conventional culture tools dilute soluble factors and offer little to no spatiotemporal control over signaling. Microfluidic chips offer potential to address both of these issues. However, few solutions offer both control over onset and duration of cell-cell communication, and high throughput. We have developed a microfluidic chip designed to culture cells in adjacent chambers, separated by valves to selectively allow or prevent exchange of paracrine signals. The chip features 16 fluidic inputs and 128 individually-addressable chambers arranged in 32 sets of 4 chambers. Media can be continuously perfused or delivered by diffusion, which we model under different culture conditions to ensure normal cell viability. Immunocytochemistry assays can be performed in the chip, which we modeled and fine-tuned to reduce total assay time to 1 h. Finally, we validate the use of the chip for co-culture studies by showing that HEK293Ta cells respond to signals secreted by RAW 264.7 immune cells in adjacent chambers, only when the valve between the chambers is opened.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas de Cocultura , Técnicas de Cultura de Células , Bioensaio
4.
J Neurosci Res ; 99(1): 110-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141462

RESUMO

ACTL6B is a component of the neuronal BRG1/brm-associated factor (nBAF) complex, which is required for chromatin remodeling in postmitotic neurons. We recently reported biallelic pathogenic variants in ACTL6B in patients diagnosed with early infantile epileptic encephalopathy, subtype 76 (EIEE-76), presenting with severe, global developmental delay, epileptic encephalopathy, cerebral atrophy, and abnormal central nervous system myelination. However, the pathophysiological mechanisms underlying their phenotype is unknown. Here, we investigate the molecular pathogenesis of ACTL6B p.(Val421_Cys425del) using in silico 3D protein modeling predictions and patient-specific induced pluripotent stem cell-derived neurons. We found neurons derived from EIEE-76 patients showed impaired accumulation of ACTL6B compared to unaffected relatives, caused by reduced protein stability. Furthermore, EIEE-76 patient-derived neurons had dysregulated nBAF target gene expression, including genes important for neuronal development and disease. Multielectrode array system analysis unveiled elevated electrophysiological activity of EIEE-76 patients-derived neurons, consistent with the patient phenotype. Taken together, our findings validate a new model for EIEE-76 and reveal how reduced ACTL6B expression affects neuronal function.


Assuntos
Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Neurônios/fisiologia , Espasmos Infantis/genética , Actinas/química , Actinas/metabolismo , Diferenciação Celular/genética , Reprogramação Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação , Estabilidade Proteica , Espasmos Infantis/fisiopatologia
5.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260655

RESUMO

Neuromuscular junctions (NMJs) are specialized synapses that mediate communication between motor neurons and skeletal muscles and are essential for movement. The degeneration of this system can lead to symptoms observed in neuromuscular and motor neuron diseases. Studying these synapses and their degeneration has proven challenging. Prior NMJ studies heavily relied upon the use of mouse, chick, or isolated primary human cells, which have demonstrated limited fidelity for disease modeling. To enable the study of NMJ dysfunction and model genetic diseases, we, and others, have developed methods to generate human NMJs from pluripotent stem cells (PSCs), embryonic stem cells, and induced pluripotent stem cells. However, published studies have highlighted technical limitations associated with these complex in vitro NMJ models. In this study, we developed a robust PSC-derived motor neuron and skeletal muscle co-culture method, and demonstrated its sensitivity in modeling motor neuron disease. Our method spontaneously and reproducibly forms human NMJs. We developed multiwell-multielectrode array (MEA) parameters to quantify the activity of PSC-derived skeletal muscles, as well as measured the electrophysiological activity of functional human PSC-derived NMJs. We further leveraged our method to morphologically and functionally assess NMJs from the familial amyotrophic lateral sclerosis (fALS) PSCs, C9orf72 hexanucleotide (G4C2)n repeat expansion (HRE), SOD1 A5V , and TDP43 G298S to define the reproducibility and sensitivity of our system. We observed a significant decrease in the numbers and activity of PSC-derived NMJs developed from the different ALS lines compared to their respective controls. Furthermore, we evaluated a therapeutic candidate undergoing clinical trials and observed a variant-dependent rescue of functionality of NMJs. Our newly developed method provides a platform for the systematic investigation of genetic causes of NMJ neurodegeneration and highlights the need for therapeutic avenues to consider patient genotype.

6.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798645

RESUMO

Vesicle-associated membrane protein-associated protein-B (VAPB) is an ER membrane bound protein. VAPB P56S causes a dominant, familial form of amyotrophic lateral sclerosis (ALS), however, the mechanism through which this mutation causes motor neuron (MN) disease remains unknown. Using inducible wild type (WT) and VAPB P56S expressing iPSC-derived MNs we show that VAPB P56S, but not WT, protein decreased neuronal firing and mitochondrial-ER contact (MERC) with an associated age-dependent decrease in mitochondrial membrane potential (MMP); all typical characteristics of MN-disease. We further show that VAPB P56S expressing iPSC-derived MNs have enhanced age-dependent sensitivity to ER stress. We identified elevated expression of the master regulator of the Integrated Stress Response (ISR) marker ATF4 and decreased protein synthesis in the VAPB P56S iPSC-derived MNs. Chemical inhibition of ISR with the compound, ISRIB, rescued all MN disease phenotype in VAPB P56S MNs. Thus, our results not only support ISR inhibition as a potential therapeutic target for ALS patients, but also provides evidence to pathogenesis.

7.
Cell Rep ; 42(11): 113436, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952157

RESUMO

Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Camundongos , Animais , Fatores de Transcrição , Doenças Neuroinflamatórias , Músculo Esquelético , Camundongos Transgênicos , Envelhecimento , Sistema Nervoso Central , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
8.
Proteomics ; 12(17): 2607-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22778083

RESUMO

Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma/análise , Transcriptoma , Veias Umbilicais/citologia , Adulto , Células Cultivadas , Cromatografia Líquida/métodos , Humanos , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
9.
Neuron ; 110(8): 1340-1357.e7, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35139363

RESUMO

Tight regulation of mRNA isoform expression is essential for neuronal development, maintenance, and function; however, the repertoire of proteins that govern isoform composition and abundance remains incomplete. Here, we show that the RNA kinase CLP1 regulates mRNA isoform expression through suppression of proximal cleavage and polyadenylation. We found that human stem-cell-derived motor neurons without CLP1 or with the disease-associated CLP1 p.R140H variant had distinct patterns of RNA-polymerase-II-associated cleavage and polyadenylation complex proteins that correlated with polyadenylation site usage. These changes resulted in imbalanced mRNA isoform expression of long genes important for neuronal function that were recapitulated in vivo. Strikingly, we observed the same pattern of reduced mRNA isoform diversity in 3' end sequencing data from brain tissues of patients with neurodegenerative disease. Together, our results identify a previously uncharacterized role for CLP1 in mRNA 3' end formation and reveal an mRNA misprocessing signature in neurodegeneration that may suggest a common mechanism of disease.


Assuntos
Doenças Neurodegenerativas , Isoformas de RNA , Humanos , Mutação , Doenças Neurodegenerativas/genética , Poliadenilação , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica
10.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858571

RESUMO

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Assuntos
Sistema A de Transporte de Aminoácidos , Aminoácidos , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo
12.
J Clin Lab Anal ; 22(4): 314-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18623121

RESUMO

Numerous interactions of the immune system with the central nervous system have been described recently. Mood and psychotic disorders, such as severe depression and schizophrenia, are both heterogeneous disorders regarding clinical symptomatology, the acuity of symptoms, the clinical course, the treatment response, and probably also the etiology. Detection of p24 RNA from Borna disease virus (BDV) by the reverse transcriptase polymerase chain reaction in patients with schizophrenia, schizoaffective disorder, and in their biological relatives was evaluated. The subjects were 27 schizophrenic and schizoaffective patients, 27 healthy controls, 20 relatives without psychiatric disease, and 24 relatives with mood disorder, who attended the Psychiatric Ambulatory of Londrina State University, Paraná, Brazil. The subjects were interviewed by structured diagnostic criteria categorized according to the Diagnostic and Statistical Manual of Mental Disorders-IV, axis I, (SCID-IV). The mean duration of illness in schizophrenic and schizoaffective patients was 15.341+/-1.494 years and the median age at onset was 22.4+/-7.371 years. There were no significant differences in gender (P=0.297), age (P=0.99), albumin (P=0.26), and body mass index (kg/m(2)) (p=0.28), among patients, controls, and relatives. Patients and biological relatives had significantly higher positive p24 RNA BDV detection than controls (P=0.04); however, the clinical significance of BDV remains to be clarified.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/genética , Transtornos Psicóticos/virologia , RNA Viral/análise , Esquizofrenia/virologia , Proteínas Virais/genética , Adulto , Doença de Borna/genética , Vírus da Doença de Borna/isolamento & purificação , Manual Diagnóstico e Estatístico de Transtornos Mentais , Saúde da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/sangue , Esquizofrenia/sangue , Proteínas Virais/sangue
14.
Stem Cells Dev ; 27(22): 1549-1556, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30142987

RESUMO

The study of variations in human neurodevelopment and cognition is limited by the availability of experimental models. While animal models only partially recapitulate the human brain development, genetics, and heterogeneity, human-induced pluripotent stem cells can provide an attractive experimental alternative. However, cellular reprogramming and further differentiation techniques are costly and time-consuming and therefore, studies using this approach are often limited to a small number of samples. In this study, we describe a rapid and cost-effective method to reprogram somatic cells and the direct generation of cortical organoids in a 96-well format. Our data are a proof-of-principle that a large cohort of samples can be generated for experimental assessment of the human neural development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células , Reprogramação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/citologia
15.
Nat Med ; 24(4): 427-437, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505030

RESUMO

Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.


Assuntos
Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Células HEK293 , Humanos , Masculino , Camundongos Transgênicos , Atrofia Muscular Espinal/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Fenótipo , Projetos Piloto , Domínios Proteicos , Expansão das Repetições de Trinucleotídeos/genética , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico
16.
J Affect Disord ; 90(1): 43-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16324750

RESUMO

BACKGROUND: Borna disease virus (BDV) is a virus that naturally infects a broad range of warm-blooded animals. BDV is an enveloped virus, non-segmented, negative-stranded RNA genome and has an organization characteristic of a member of Bornaviridae in the order of Mononegavirale. In the present work we investigated the presence of BDV p24 RNA in peripheral blood cells from 30 psychiatric patients (19 with mood disorder and 11 with psychotic disorder) and 30 healthy volunteers as the control group. METHODS: All subjects were interviewed by structured diagnostic criteria categorized according to the DSM-IV, Axis I (SCID-V). The presence of BDV p24 RNA was investigated by nested reverse transcriptase PCR (RT-PCR) using specific primers to p24 from BDV. The specificity of the detection was analyzed by the sequencing of PCR products. RESULTS: The mean duration of illness in mood and psychotic patients with p24 RNA of BDV was 25 (+/-12.3) years and the median age was 43.77 (+/-15.2) years. There were no significant differences in gender and age among patients and control group, neither duration of illness among patients with mood and psychotic disorders in the presence or absence of p24 RNA of BDV. We found a frequency of 33.33% (10/30) of BDV-RNA on patient's group and 13.33% (4/30) on control group. The given sequences revealed identity with GenBank database sequence for BDV. CONCLUSION: The detection of a higher level of BDV-RNA in the peripheral blood cells of patients than on control group should help our understanding of the pathogenesis in the disease.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Vírus da Doença de Borna/isolamento & purificação , Transtornos do Humor/genética , Transtornos do Humor/virologia , RNA Viral/genética , Esquizofrenia/genética , Esquizofrenia/virologia , Proteínas Virais/genética , Adolescente , Adulto , Doença de Borna/epidemiologia , Brasil/epidemiologia , Primers do DNA/genética , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/epidemiologia , Prevalência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/epidemiologia , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
Int J Mol Med ; 18(4): 785-93, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964435

RESUMO

The human immunodeficiency virus type 1 (HIV-1) epidemic is increasing in Brazil, and little information has been reported about the genetic host factors related to HIV-1 infection in the Brazilian population. A polymorphism in the conserved 3' untranslated region of the stromal cell-derived factor 1 (SDF1/CXCL12) gene has been related either to resistance to HIV-1 infection and delayed progression to AIDS or to rapid disease progression and death. A longitudinal study was conducted to evaluate the association of the SDF1 polymorphism and the progression of HIV-1 infection in 161 asymptomatic patients infected with HIV-1 (ASYMPT) and 617 patients with AIDS (SYMPT) from Londrina and the surrounding region, southern Brazil. The endpoints used were the development of AIDS, death, and the slopes of the CD4+ T cell counts and HIV-1 RNA plasma levels. Among the 161 ASYMPT patients, all of the 7 patients (4.3%) homozygous for the mutation remained asymptomatic (p=0.1906); 6 of them had not initiated antiretroviral therapy. Among the 617 patients with AIDS, 40 (6.5%) progressed to death. Of these, 33/388 (8.5%) did not have the SDF1-3'A allele, 6/196 (3.1%) were heterozygous and 1/33 (3.0%) was homozygous for the SDF1-3'A allele (p=0.029). The SDF1 genotypes were not associated with the surrogate markers of HIV-1 disease progression such as the CD4+ T cell decline and plasma HIV-1 RNA levels. The results observed in this study support the hypothesis that the mutation of SDF1-3'A could have a possible late-stage protective effect on HIV-1 disease progression in the Brazilian population.


Assuntos
Quimiocinas CXC/genética , Infecções por HIV/genética , HIV-1/crescimento & desenvolvimento , Polimorfismo Genético/genética , Adolescente , Adulto , Idoso , Alelos , Análise de Variância , Brasil/epidemiologia , Contagem de Linfócito CD4 , Quimiocina CXCL12 , Progressão da Doença , Feminino , Frequência do Gene , Genótipo , Infecções por HIV/sangue , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Fragmento de Restrição , RNA Viral/sangue
18.
Sci Transl Med ; 8(370): 370ra181, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28003546

RESUMO

Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser96 Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser96 phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.


Assuntos
Transtornos Musculares Atróficos/metabolismo , Peptídeos/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores Androgênicos/metabolismo , Animais , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Ligantes , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Células PC12 , Fosforilação , Desnaturação Proteica , Dobramento de Proteína , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
Nat Med ; 22(1): 37-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642438

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Assuntos
Doença de Huntington/genética , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Animais , Morte Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Movimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , PPAR delta/genética , PPAR delta/metabolismo , Piperazinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/agonistas , Sulfonamidas/farmacologia
20.
Elife ; 4: e08493, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26308581

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a progressive neuromuscular disease caused by polyglutamine expansion in the androgen receptor (AR) protein. Despite extensive research, the exact pathogenic mechanisms underlying SBMA remain elusive. In this study, we present evidence that Nemo-like kinase (NLK) promotes disease pathogenesis across multiple SBMA model systems. Most remarkably, loss of one copy of Nlk rescues SBMA phenotypes in mice, including extending lifespan. We also investigated the molecular mechanisms by which NLK exerts its effects in SBMA. Specifically, we have found that NLK can phosphorylate the mutant polyglutamine-expanded AR, enhance its aggregation, and promote AR-dependent gene transcription by regulating AR-cofactor interactions. Furthermore, NLK modulates the toxicity of a mutant AR fragment via a mechanism that is independent of AR-mediated gene transcription. Our findings uncover a crucial role for NLK in controlling SBMA toxicity and reveal a novel avenue for therapy development in SBMA.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transtornos Musculares Atróficos/patologia , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular , Drosophila , Histocitoquímica , Humanos , Camundongos , Músculos/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Medula Espinal/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA