Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161656

RESUMO

This paper proposes a barrier function adaptive non-singular terminal sliding mode controller for a six-degrees-of-freedom (6DoF) quad-rotor in the existence of matched disturbances. For this reason, a linear sliding surface according to the tracking error dynamics is proposed for the convergence of tracking errors to origin. Afterward, a novel non-singular terminal sliding surface is suggested to guarantee the finite-time reachability of the linear sliding surface to origin. Moreover, for the rejection of the matched disturbances that enter into the quad-rotor system, an adaptive control law based on barrier function is recommended to approximate the matched disturbances at any moment. The barrier function-based control technique has two valuable properties. First, this function forces the error dynamics to converge on a region near the origin in a finite time. Secondly, it can remove the increase in the adaptive gain because of the matched disturbances. Lastly, simulation results are given to demonstrate the validation of this technique.

2.
Sensors (Basel) ; 22(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408398

RESUMO

In this paper, a disturbance observer based on the non-singular terminal sliding mode control method was presented for the quadrotor in the presence of wind perturbation. First, the position and attitude dynamical equation of the quadrotor was introduced in the existence of windy perturbation. It was difficult to exactly determine the upper bound of the perturbations in the practical systems such as robot manipulators and quadrotor UAVs. Then, a disturbance observer was designed for the estimation of wind perturbation which was entered to the quadrotor system at any moment. Afterward, a non-singular terminal sliding surface was proposed based on the disturbance observer variable. Furthermore, finite time convergence of the closed-loop position and attitude models of the quadrotor was proved using Lyapunov theory concept. Unlike the existing methods, the new adaptive non-singular terminal sliding mode tracker for quadrotor unmanned aerial vehicles enabled accurate tracking control, robust performance, and parameter tuning. Through the combination of the finite time tracker and disturbance observer, the position and attitude tracking of quadrotor UAVs could be accurately performed not only in the nominal environment but also in the existence of different types of perturbations. Finally, simulation results based on the recommended method were provided to validate the proficiency of the suggested method. Moreover, comparison results with another existing study were presented to prove the success of the proposed method.


Assuntos
Algoritmos , Dispositivos Aéreos não Tripulados , Simulação por Computador , Vento
3.
Sensors (Basel) ; 21(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883788

RESUMO

This paper addresses the problem of robust sensor faults detection and isolation in the air-path system of heavy-duty diesel engines, which has not been completely considered in the literature. Calibration or the total failure of a sensor can cause sensor faults. In the worst-case scenario, the engines can be totally damaged by the sensor faults. For this purpose, a second-order sliding mode observer is proposed to reconstruct the sensor faults in the presence of unknown external disturbances. To this aim, the concept of the equivalent output error injection method and the linear matrix inequality (LMI) tool are utilized to minimize the effects of uncertainties and disturbances on the reconstructed fault signals. The simulation results verify the performance and robustness of the proposed method. By reconstructing the sensor faults, the whole system can be prevented from failing before the corrupted sensor measurements are used by the controller.


Assuntos
Simulação por Computador , Incerteza
4.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668960

RESUMO

In this paper, an incorporated bridge-type superconducting fault current limiter (BSFCL) and Dynamic Voltage Restorer (DVR) is presented to improve the voltage quality and limiting fault current problems in distribution systems. In order to achieve these capabilities, the BSFCL and DVR are integrated through a common DC link as a BSFCL-DVR system. The FCL and DVR ports of the BSFCL-DVR system are located in the beginning and end of the sensitive loads' feeder integrated to the point of common coupling (PCC) in the distribution system. At first, the principle operation of the BSFCL-DVR is discussed. Then, a control system for the BSFCL-DVR system is designed to enhance the voltage quality and limit the fault current. Eventually, the efficiency of the BSFCL-DVR system is verified through the PSCAD/EMTDC simulation.

5.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577393

RESUMO

Multirotor unmanned aerial vehicles (MUAVs) are becoming more prominent for diverse real-world applications due to their inherent hovering ability, swift manoeuvring and vertical take-off landing capabilities. Nonetheless, to be entirely applicable for various obstacle prone environments, the conventional MUAVs may not be able to change their configuration depending on the available space and perform designated missions. It necessitates the morphing phenomenon of MUAVS, wherein it can alter their geometric structure autonomously. This article presents the development of a morphed MUAV based on a simple rotary actuation mechanism capable of driving each arm's smoothly and satisfying the necessary reduction in workspace volume to navigate in the obstacle prone regions. The mathematical modelling for the folding mechanism was formulated, and corresponding kinematic analysis was performed to understand the synchronous motion characteristics of the arms during the folding of arms. Experiments were conducted by precisely actuating the servo motors based on the proximity ultrasonic sensor data to avoid the obstacle for achieving effective morphing of MUAV. The flight tests were conducted to estimate the endurance and attain a change in morphology of MUAV from "X-Configuration" to "H-Configuration" with the four arms actuated synchronously without time delay.


Assuntos
Aves , Modelos Teóricos , Animais , Fenômenos Biomecânicos
6.
Sensors (Basel) ; 21(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34770723

RESUMO

The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detected by comparison of measured end estimated signals. In this scheme, the detecting performance depends on the estimation and modeling performance. The suggested NT3FLS is used because of the existence of a high level of measurement errors and uncertainties in this problem. The designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in noise and error. The level of non-singleton fuzzification and membership parameters are tuned by maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the non-Gaussian noises that are common in industrial applications. The various types of flowmeters are investigated, and the effect of common faults are examined. It is shown that the suggested approach can detect the various faults with good accuracy in comparison with conventional approaches.


Assuntos
Fluxômetros , Algoritmos , Lógica Fuzzy , Indústrias
7.
Heliyon ; 10(6): e27489, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515729

RESUMO

In a world grappling with escalating energy demand and pressing environmental concerns, microgrids have risen as a promising solution to bolster energy efficiency, alleviate costs, and mitigate carbon emissions. This article delves into the dynamic realm of microgrids, emphasizing their indispensable role in addressing today's energy needs while navigating the hazards of pollution. Microgrid operations are intricately shaped by a web of constraints, categorized into two essential domains: those inherent to the microgrid itself and those dictated by the external environment. These constraints, stemming from component limitations, environmental factors, and grid connections, exert substantial influence over the microgrid's operational capabilities. Of particular significance is the three-tiered control framework, encompassing primary, secondary, and energy management controls. This framework guarantees the microgrid's optimal function, regulating power quality, frequency, and voltage within predefined parameters. Central to these operations is the energy management control, the third tier, which warrants in-depth exploration. This facet unveils the art of fine-tuning parameters within the microgrid's components, seamlessly connecting them with their surroundings to streamline energy flow and safeguard uninterrupted operation. In essence, this article scrutinizes the intricate interplay between microgrid constraints and energy management parameters, illuminating how the nuanced adjustment of these parameters is instrumental in achieving the dual objectives of cost reduction and Carbon Dioxide emission minimization, thereby shaping a more sustainable and eco-conscious energy landscape. This study investigates microgrid dynamics, focusing on the nuanced interplay between constraints and energy management for cost reduction and Carbon Dioxide minimization. We employ a three-tiered control framework-primary, secondary, and energy management controls-to regulate microgrid function, exploring fine-tuned parameter adjustments for optimal performance.

8.
Heliyon ; 9(2): e13378, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846694

RESUMO

Compared to serial robots, parallel robots have potential superiorities in rigidity, accuracy, and ability to carry heavy loads. On the other hand, the existence of complex dynamics and uncertainties makes the accurate control of parallel robots challenging. This work proposes an optimal adaptive barrier-function-based super-twisting sliding mode control scheme based on genetic algorithms and global nonlinear sliding surface for the trajectory tracking control of parallel robots with highly-complex dynamics in the presence of uncertainties and external disturbances. The globality of the proposed controller guarantees the elimination of the reaching phase and the existence of the sliding mode around the surface right from the initial instance. Moreover, the barrier-function based adaptation law removes the requirement to know the upper bounds of the external disturbances, thus making it more suitable for practical implementations. The performance and efficiency of the controller is assessed using simulation study of a Stewart manipulator and an experimental evaluation on a 5-bar parallel robot. The obtained results were further compared to that of a six-channel PID controller and an adaptive sliding mode control method. The obtained results confirmed the superior tracking performance and robustness of the proposed approach.

9.
ISA Trans ; 141: 157-166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500414

RESUMO

This study investigates a reliable fuzzy static-output feedback control (SOFC) scheme for uncertain Takagi-Sugeno fuzzy model (TSFM)-based nonlinear systems under the networked induced delays, information package losses and actuator faults, simultaneously. For this purpose, firstly, a comprehensive model for the actuator fault is suggested to enhance the performance of the actuator in the networked control systems (NCSs). More precisely, the suggested model contains an additive stochastic perturbation term in the actuator to further realize the control scheme. Besides, the Markov chain (MC) is employed to model the networked induced arbitrary delays and the information package losses. Hence, the corresponding closed-loop system lies in the Markovian jump systems (MJS). Then, based on the Lyapunov theory, the stochastic robust stability of the obtained system is studied and necessary conditions are extracted in new offline linear matrix inequalities (LMIs). Since the accurate value of the transition probabilities (TP) of the MC is not definite and even the identification is difficult, in view of practical applications in our control strategy, partly unknown TPs are assumed. Finally, to validate the superiorities of the suggested control approach, a truck-trailer system is adopted and simulated. The simulation results confirm the superiorities of the suggested control approach.

10.
ISA Trans ; 134: 481-496, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36031422

RESUMO

In this article, an adaptive non-singular terminal sliding mode controller (NTSMC) is designed based on a barrier function for the robust stability of a category of non-linear dynamic systems in the existence of the external disturbances. The planned approach implements a non-singular terminal sliding mode controller (NTSMC) to ensure robust performance with finite time convergence and singularity-free dynamics. It also uses Barrier Functions (BFs) as an adaptation approach for the NTSMC to attain the tracking errors' convergence to a pre-defined neighbourhood of origin, with a controller gain that is not over-estimated and without requiring any knowledge about the upper bounds of disturbances. The Lyapunov-based stability analysis is carried out to confirm the asymptotic convergence of tracking errors to a pre-defined neighbourhood of zero. The effectiveness and performance of the planned approach is illustrated through simulations and experiments.

11.
Sci Rep ; 13(1): 17527, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845298

RESUMO

High-figure of merit (FoM) plasmonic microwave resonator is researched as a non-invasive on-body sensor to monitor the human body's blood glucose variation rate in adults for biomedical applications, e.g., diabetic patients. The resonance frequencies of the proposed sensor are measured to be around [Formula: see text] GHz and [Formula: see text] GHz over the frequency band of DC to 6GHz which are suitable for monitoring interstitial fluid (ISF) changing rate. The [Formula: see text] sensor is experimentally wrapped on the human body arm to monitor the blood glucose changing rate via amplitude and frequency variations of the sensor. Amplitude variation and frequency shift are measured to be around 7 dB and 30 MHz, respectively. The measured results demonstrate the high precision of the proposed approach to depict a valid diagram for glucose changing rate due to good impedance matching of the designed microwave sensor and human body. The sensor is shown to enhance the sensitivity by a factor of 5 compared to the conventional ones.


Assuntos
Automonitorização da Glicemia , Glicemia , Adulto , Humanos , Micro-Ondas , Impedância Elétrica , Glucose
12.
ISA Trans ; 123: 455-471, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34130859

RESUMO

In this study, the fully-actuated dynamic equation of quad-rotor as a type of Unmanned Aerial Vehicles (UAVs) is considered in the existence of input-delay, model uncertainty and wind disturbance. Then, a super-twisting terminal sliding mode control approach is planned with the aim of the finite-time attitude and position tracking of quad-rotor UAV considering input-delay, model uncertainty and wind disturbance. The finite time convergence of the tracking trajectory of quad-rotor is proved by Lyapunov theory concept. When the upper bound of the modeling uncertainty and wind disturbance is supposed to be unknown, an adaptive super-twisting terminal sliding mode control is proposed. Therefore, the unknown bounds of the model uncertainty and wind disturbance affecting the quad-rotor UAV are estimated using the adaptive-tuning control laws. Finally, simulation outcomes and experimental verifications are provided to demonstrate the validation and success of planned control technique.

13.
PLoS One ; 17(4): e0263017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482650

RESUMO

The paper investigates a leader-following scheme for nonlinear multi-agent systems (MASs). The network of agents involves time-delay, unknown leader's states, external perturbations, and switching graph topologies. Two distributed protocols including a consensus protocol and an observer are utilized to reconstruct the unavailable states of the leader in a network of agents. The H∞-based stability conditions for estimation and consensus problems are obtained in the framework of linear-matrix inequalities (LMIs) and the Lyapunov-Krasovskii approach. It is ensured that each agent achieves the leader-following agreement asymptotically. Moreover, the robustness of the control policy concerning a gain perturbation is guaranteed. Simulation results are performed to assess the suggested schemes. It is shown that the suggested approach gives a remarkable accuracy in the consensus problem and leader's states estimation in the presence of time-varying gain perturbations, time-delay, switching topology and disturbances. The H∞ and LMIs conditions are well satisfied and the error trajectories are well converged to the origin.


Assuntos
Simulação por Computador , Consenso
14.
ISA Trans ; 129(Pt B): 88-99, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35264305

RESUMO

In this study, a robust control technique is investigated for the reference tracking of uncertain time-delayed systems in the existence of the actuator saturation. Due to emerging of some control complexities, as well as the input limitations, time-varying delay, uncertainty, and external disturbance, such a tracking goal would be realized through suitable design of the composite nonlinear feedback (CNF) controller. Thus, considering the mentioned limitations, a Lyapunov-based procedure is used to determine the control law. Then, the parameters of the CNF input are derived by using the solution of a linear matrix inequality (LMI) problem. The planned tracking idea is numerically implemented in two uncertain control systems. Some performance characteristics (i.e., the tracking error, boundedness, and transient responses) are compared with similar ones. Accordingly, the simulations illustrate the efficiency of the suggested control procedure over the existing CNF approaches.

15.
Front Neuroinform ; 15: 667375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539369

RESUMO

Image interpolation is an essential process for image processing and computer graphics in wide applications to medical imaging. For image interpolation used in medical diagnosis, the two-dimensional (2D) to three-dimensional (3D) transformation can significantly reduce human error, leading to better decisions. This research proposes the type-2 fuzzy neural networks method which is a hybrid of the fuzzy logic and neural networks as well as recurrent type-2 fuzzy neural networks (RT2FNNs) for advancing a novel 2D to 3D strategy. The ability of the proposed methods in the approximation of the function for image interpolation is investigated. The results report that both proposed methods are reliable for medical diagnosis. However, the RT2FNN model outperforms the type-2 fuzzy neural networks model. The average squares error for the recurrent network and the typical network reported 0.016 and 0.025, respectively. On the other hand, the number of fuzzy rules for the recurrent network and the typical network reported 16 and 22, respectively.

16.
Sci Prog ; 104(1): 368504211003388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33733934

RESUMO

This paper proposes a novel exponential hyper-chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan-Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper-chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high-order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper-chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper-chaotic system to increase the security of image encryption.


Assuntos
Algoritmos , Registros
17.
Micromachines (Basel) ; 12(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832801

RESUMO

In this study, a novel data-driven control scheme is presented for MEMS gyroscopes (MEMS-Gs). The uncertainties are tackled by suggested type-3 fuzzy system with non-singleton fuzzification (NT3FS). Besides the dynamics uncertainties, the suggested NT3FS can also handle the input measurement errors. The rules of NT3FS are online tuned to better compensate the disturbances. By the input-output data set a data-driven scheme is designed, and a new LMI set is presented to ensure the stability. By several simulations and comparisons the superiority of the introduced control scheme is demonstrated.

18.
ISA Trans ; 105: 33-50, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32493578

RESUMO

The main goal in this article is synchronization of fractional-order uncertain chaotic systems in the finite time. For this aim, a terminal sliding mode controller with fractional sliding surface is employed to synchronize the states of two different fractional order chaotic systems with parameter uncertainties and external disturbances. This approach is robust when the effects of perturbations are derived into account. A fractional-order adaptive terminal sliding mode controller is developed to estimate the upper bounds of perturbations. Both suggested control laws are useful for fractional-order uncertain chaotic master-slave systems. Demonstrative simulation outcomes for Lorenz and Chen fractional-order systems with model perturbations and the engineering application on message telecommunication indicate the efficiency and usefulness of the recommended design.

19.
ISA Trans ; 101: 177-188, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32061354

RESUMO

In this work, we propose a robust stabilizer for nonholonomic systems with time varying time delays and nonlinear disturbances. The proposed approach implements a composite nonlinear feedback structure in which a linear controller is designed to yield a fast response and a nonlinear feedback control law is considered to increase the system's damping ratio. This structure results in the simultaneous improvement of the steady-state accuracy and transient performance of time-delay nonholonomic systems. Asymptotic stability of the proposed feedback control approach is derived using a Lyapunov-Krasovskii functional aimed at reaching a compromise between system's transient performance and asymptotic stability. Simulation and analytical results are considered to highlight the robustness and superior performance of the proposed approach in controlling high-order-time-delay nonholonomic systems with nonlinear disturbances.

20.
ISA Trans ; 77: 100-111, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29628180

RESUMO

This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA