Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 148(1-2): 126-38, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265407

RESUMO

A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Animais , Candida albicans/fisiologia , Candida albicans/ultraestrutura , Candidíase Bucal/microbiologia , Candidíase Vulvovaginal/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes Fúngicos , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Estomatite sob Prótese/microbiologia
2.
PLoS Pathog ; 19(12): e1011843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127686

RESUMO

Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.


Assuntos
Candida , Candidíase , Humanos , Candidíase/microbiologia , Virulência , Candida auris , Surtos de Doenças , Antifúngicos
3.
Proc Natl Acad Sci U S A ; 119(38): e2211424119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095193

RESUMO

Extracellular vesicles mediate community interactions among cells ranging from unicellular microbes to complex vertebrates. Extracellular vesicles of the fungal pathogen Candida albicans are vital for biofilm communities to produce matrix, which confers environmental protection and modulates community dispersion. Infections are increasingly due to diverse Candida species, such as the emerging pathogen Candida auris, as well as mixed Candida communities. Here, we define the composition and function of biofilm-associated vesicles among five species across the Candida genus. We find similarities in vesicle size and release over the biofilm lifespan. Whereas overall cargo proteomes differ dramatically among species, a group of 36 common proteins is enriched for orthologs of C. albicans biofilm mediators. To understand the function of this set of proteins, we asked whether mutants in select components were important for key biofilm processes, including drug tolerance and dispersion. We found that the majority of these cargo components impact one or both biofilm processes across all five species. Exogenous delivery of wild-type vesicle cargo returned mutant phenotypes toward wild type. To assess the impact of vesicle cargo on interspecies interactions, we performed cross-species vesicle addition and observed functional complementation for both biofilm phenotypes. We explored the biologic relevance of this cross-species biofilm interaction in mixed species and mutant studies examining the drug-resistance phenotype. We found a majority of biofilm interactions among species restored the community's wild-type behavior. Our studies indicate that vesicles influence the development of protective monomicrobial and mixed microbial biofilm communities.


Assuntos
Biofilmes , Candida albicans , Vesículas Extracelulares , Proteínas Fúngicas , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Farmacorresistência Fúngica , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo
4.
J Infect Dis ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330449

RESUMO

Invasive fungal pathogen Candida auris has become a public health threat causing outbreaks of high mortality infections. Drug resistance often limits treatment options. For Candida albicans, subinhibitory concentrations of echinocandins unmask immunostimulatory ß-glucan, augmenting immunity. Here we analyze the impact of echinocandin treatment of C. auris on ß-glucan exposure and human neutrophil interactions. We show subinhibitory concentrations lead to minimal glucan unmasking and only subtle influences on neutrophil functions for the isolates belonging to circulating clades. The data suggest that echinocandin treatment will not largely alter phagocytic responses. Glucan masking pathways appear to differ between C. auris and C. albicans.

5.
Antimicrob Agents Chemother ; 68(1): e0095523, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092678

RESUMO

The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.


Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/farmacologia , Candida auris , Lipossomos , Testes de Sensibilidade Microbiana , Biofilmes
6.
Antimicrob Agents Chemother ; 67(5): e0008123, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37097144

RESUMO

New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 µg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.


Assuntos
Candidíase , Dispositivos de Acesso Vascular , Ratos , Animais , Suínos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candida , Candida auris , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
7.
J Infect Dis ; 225(10): 1791-1795, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35267041

RESUMO

Candida auris proliferates and persists on the skin of patients, often leading to health care-associated infections with high mortality. Here, we describe 2 clinically relevant skin models and show that C. auris grows similarly on human and porcine skin. Additionally, we demonstrate that other Candida spp., including those with phylogenetic similarity to C. auris, do not display high growth in the skin microenvironment. These studies highlight the utility of 2 ex vivo models of C. auris colonization that allow reproducible differentiation among Candida spp., which should be a useful tool for comparison of C. auris clinical isolates and genetically mutated strains.


Assuntos
Candidíase , Animais , Antifúngicos , Candida/genética , Candida auris , Candidíase/microbiologia , Humanos , Filogenia , Pele/microbiologia , Suínos
8.
Semin Cell Dev Biol ; 89: 47-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29601861

RESUMO

Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects.


Assuntos
Armadilhas Extracelulares/imunologia , Micoses/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Antifúngicos/uso terapêutico , Armadilhas Extracelulares/microbiologia , Fungos/imunologia , Fungos/patogenicidade , Humanos , Micoses/microbiologia , Neutrófilos/microbiologia , Espécies Reativas de Oxigênio/imunologia
9.
J Biol Chem ; 294(8): 2700-2713, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593499

RESUMO

Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen Candida albicans expresses three copper-only SODs, and deletion of one of them, SOD5, eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, C. albicans SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit C. albicans SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.


Assuntos
Candida albicans/enzimologia , Infecções Relacionadas a Cateter/prevenção & controle , Catéteres/microbiologia , Cobre/metabolismo , Inibidores Enzimáticos/farmacologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Candidemia/enzimologia , Candidemia/etiologia , Candidemia/prevenção & controle , Domínio Catalítico , Infecções Relacionadas a Cateter/enzimologia , Infecções Relacionadas a Cateter/etiologia , Catéteres/efeitos adversos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Conformação Proteica , Ratos , Zinco/farmacologia
10.
PLoS Pathog ; 14(5): e1007073, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782541

RESUMO

Neutrophils are classically defined as terminally differentiated, short-lived cells; however, neutrophils can be long-lived with phenotypic plasticity. During inflammation, a subset of neutrophils transdifferentiate into a population called neutrophil-DC hybrids (PMN-DCs) having properties of both neutrophils and dendritic cells. While these cells ubiquitously appear during inflammation, the role of PMN-DCs in disease remains poorly understood. We observed the differentiation of PMN-DCs in pre-clinical murine models of fungal infection: blastomycosis, aspergillosis and candidiasis. Using reporter strains of fungal viability, we found that PMN-DCs associate with fungal cells and kill them more efficiently than undifferentiated canonical neutrophils. During pulmonary blastomycosis, PMN-DCs comprised less than 1% of leukocytes yet contributed up to 15% of the fungal killing. PMN-DCs displayed higher expression of pattern recognition receptors, greater phagocytosis, and heightened production of reactive oxygen species compared to canonical neutrophils. PMN-DCs also displayed prominent NETosis. To further study PMN-DC function, we exploited a granulocyte/macrophage progenitor (GMP) cell line, generated PMN-DCs to over 90% purity, and used them for adoptive transfer and antigen presentation studies. Adoptively transferred PMN-DCs from the GMP line enhanced protection against systemic infection in vivo. PMN-DCs pulsed with antigen activated fungal calnexin-specific transgenic T cells in vitro and in vivo, promoting the production of interferon-γ and interleukin-17 in these CD4+ T cells. Through direct fungal killing and induction of adaptive immunity, PMN-DCs are potent effectors of antifungal immunity and thereby represent innovative cell therapeutic targets in treating life-threatening fungal infections.


Assuntos
Blastomicose/imunologia , Células Dendríticas/imunologia , Células Híbridas/imunologia , Infecções Fúngicas Invasivas/imunologia , Neutrófilos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Aspergillus fumigatus/imunologia , Blastomyces/imunologia , Células da Medula Óssea/imunologia , Candida albicans/imunologia , Citometria de Fluxo , Rim/microbiologia , Rim/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Óxido Nitroso/análise , Espécies Reativas de Oxigênio/análise , Baço/citologia , Baço/imunologia , Baço/microbiologia
12.
PLoS Pathog ; 13(12): e1006763, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29194441

RESUMO

Until recently, NADPH oxidase (NOX) enzymes were thought to be a property of multicellularity, where the reactive oxygen species (ROS) produced by NOX acts in signaling processes or in attacking invading microbes through oxidative damage. We demonstrate here that the unicellular yeast and opportunistic fungal pathogen Candida albicans is capable of a ROS burst using a member of the NOX enzyme family, which we identify as Fre8. C. albicans can exist in either a unicellular yeast-like budding form or as filamentous multicellular hyphae or pseudohyphae, and the ROS burst of Fre8 begins as cells transition to the hyphal state. Fre8 is induced during hyphal morphogenesis and specifically produces ROS at the growing tip of the polarized cell. The superoxide dismutase Sod5 is co-induced with Fre8 and our findings are consistent with a model in which extracellular Sod5 acts as partner for Fre8, converting Fre8-derived superoxide to the diffusible H2O2 molecule. Mutants of fre8Δ/Δ exhibit a morphogenesis defect in vitro and are specifically impaired in development or maintenance of elongated hyphae, a defect that is rescued by exogenous sources of H2O2. A fre8Δ/Δ deficiency in hyphal development was similarly observed in vivo during C. albicans invasion of the kidney in a mouse model for disseminated candidiasis. Moreover C. albicans fre8Δ/Δ mutants showed defects in a rat catheter model for biofilms. Together these studies demonstrate that like multicellular organisms, C. albicans expresses NOX to produce ROS and this ROS helps drive fungal morphogenesis in the animal host.


Assuntos
Candida albicans/crescimento & desenvolvimento , Morfogênese , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Biofilmes , Candida albicans/metabolismo , Candidíase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
13.
Artigo em Inglês | MEDLINE | ID: mdl-29987146

RESUMO

The nosocomial pathogen Candida albicans forms biofilms on medical devices that persist in the face of antifungals and host defenses. Echinocandins, the most effective antibiofilm drugs, have recently been shown to augment the activity of neutrophils against biofilms through an unknown mechanism. Here, we show that treatment of C. albicans biofilms with subinhibitory concentrations of echinocandins promotes the formation of neutrophil extracellular traps (NETs), structures of DNA, histones, and antimicrobial proteins with antifungal activity.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/imunologia , Equinocandinas/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Neutrófilos/imunologia , Candida albicans/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos
14.
PLoS Pathog ; 12(9): e1005884, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622514

RESUMO

Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Armadilhas Extracelulares/imunologia , Hifas/imunologia , Neutrófilos/imunologia , Animais , Candida albicans/ultraestrutura , Feminino , Humanos , Hifas/ultraestrutura , Masculino , Neutrófilos/ultraestrutura , Ratos
15.
Proc Natl Acad Sci U S A ; 112(13): 4092-7, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25770218

RESUMO

Biofilms of the fungus Candida albicans produce extracellular matrix that confers such properties as adherence and drug resistance. Our prior studies indicate that the matrix is complex, with major polysaccharide constituents being α-mannan, ß-1,6 glucan, and ß-1,3 glucan. Here we implement genetic, biochemical, and pharmacological approaches to unravel the contributions of these three constituents to matrix structure and function. Interference with synthesis or export of any one polysaccharide constituent altered matrix concentrations of each of the other polysaccharides. Each of these was also required for matrix function, as assessed by assays for sequestration of the antifungal drug fluconazole. These results indicate that matrix biogenesis entails coordinated delivery of the individual matrix polysaccharides. To understand whether coordination occurs at the cellular level or the community level, we asked whether matrix-defective mutant strains could be coaxed to produce functional matrix through biofilm coculture. We observed that mixed biofilms inoculated with mutants containing a disruption in each polysaccharide pathway had restored mature matrix structure, composition, and biofilm drug resistance. Our results argue that functional matrix biogenesis is coordinated extracellularly and thus reflects the cooperative actions of the biofilm community.


Assuntos
Antifúngicos/química , Biofilmes , Candida albicans/metabolismo , Carboidratos/química , Parede Celular/metabolismo , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Fluconazol/química , Glucose/química , Manose/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polissacarídeos/química
16.
J Autoimmun ; 80: 39-47, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28188029

RESUMO

Citrullination, the post-translational conversion of arginines to citrullines, may contribute to rheumatoid arthritis development given the generation of anti-citrullinated protein antibodies (ACPAs). However, it is not known which peptidylarginine deiminase (PAD) catalyzes the citrullination seen in inflammation. PAD4 exacerbates inflammatory arthritis and is critical for neutrophil extracellular traps (NETs). NETs display citrullinated antigens targeted by ACPAs and thus may be a source of citrullinated protein. However, PAD4 is not required for citrullination in inflamed lungs. PAD2 is important for citrullination in healthy tissues and is present in NETs, but its role in citrullination in the inflamed joint, NETosis and inflammatory arthritis is unknown. Here we use mice with TNFα-induced inflammatory arthritis, a model of rheumatoid arthritis, to identify the roles of PAD2 and PAD4 in citrullination, NETosis, and arthritis. In mice with TNFα-induced arthritis, citrullination in the inflamed ankle was increased as determined by western blot. This increase was unchanged in the ankles of mice that lack PAD4. In contrast, citrullination was nearly absent in the ankles of PAD2-deficient mice. Interestingly, PAD2 was not required for NET formation as assessed by immunofluorescence or for killing of Candida albicans as determined by viability assay. Finally, plasma cell numbers as assessed by flow cytometry, IgG levels quantified by ELISA, and inflammatory arthritis as determined by clinical and pathological scoring were all reduced in the absence of PAD2. Thus, PAD2 contributes to TNFα-induced citrullination and arthritis, but is not required for NETosis. In contrast, PAD4, which is critical for NETosis, is dispensable for generalized citrullination supporting the possibility that NETs may not be a major source of citrullinated protein in arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Hidrolases/metabolismo , Inflamação/imunologia , Articulações/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Anticorpos Antiproteína Citrulinada/metabolismo , Artrite Experimental/genética , Citrulinação , Armadilhas Extracelulares/metabolismo , Humanos , Hidrolases/genética , Imunoglobulina G/metabolismo , Articulações/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Plasmócitos/fisiologia , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Fator de Necrose Tumoral alfa/genética
17.
Mol Microbiol ; 96(6): 1226-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784162

RESUMO

Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica
18.
Antimicrob Agents Chemother ; 60(5): 3152-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902759

RESUMO

New drug targets are of great interest for the treatment of fungal biofilms, which are routinely resistant to antifungal therapies. We theorized that the interaction of Candida albicans with matricellular host proteins would provide a novel target. Here, we show that an inhibitory protein (FUD) targeting Candida-fibronectin interactions disrupts biofilm formation in vitro and in vivo in a rat venous catheter model. The peptide appears to act by blocking the surface adhesion of Candida, halting biofilm formation.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fibronectinas/metabolismo , Animais , Infecções Relacionadas a Cateter/microbiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ratos
20.
Infect Immun ; 83(12): 4630-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371129

RESUMO

Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/ultraestrutura , Candidíase/genética , Interações Hospedeiro-Patógeno/imunologia , Amilases/genética , Amilases/imunologia , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/imunologia , Proteína C-Reativa/genética , Proteína C-Reativa/imunologia , Calgranulina B/genética , Calgranulina B/imunologia , Candida albicans/imunologia , Candida albicans/patogenicidade , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/patologia , Dentaduras/microbiologia , Regulação da Expressão Gênica , Inflamação , Microscopia Eletrônica de Varredura , Peroxidase/genética , Peroxidase/imunologia , Ratos , Ratos Sprague-Dawley , Cateteres Urinários/microbiologia , Dispositivos de Acesso Vascular/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA