Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37713469

RESUMO

MOTIVATION: Efficient assessment of the blood-brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value (a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate. RESULTS: Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy (0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation, our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29-0.83. Consequently, our model can accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates. AVAILABILITY AND IMPLEMENTATION: Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip.


Assuntos
Barreira Hematoencefálica , Encéfalo , Barreira Hematoencefálica/fisiologia , Transporte Biológico , Permeabilidade , Fármacos do Sistema Nervoso Central
2.
Mol Syst Biol ; 19(12): e11801, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37984409

RESUMO

The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3ß), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.


Assuntos
Doença de Alzheimer , Doença de Huntington , Deficiências na Proteostase , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Glicogênio Sintase Quinase 3 beta , Doença de Huntington/genética , Transdução de Sinais
3.
BMC Bioinformatics ; 24(1): 66, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829107

RESUMO

BACKGROUND: Acute oral toxicity of drug candidates can lead to drug development failure; thus, predicting the acute oral toxicity of small compounds is important for successful drug development. However, evaluation of the acute oral toxicity of small compounds considered in the early stages of drug discovery is limited because of cost and time. Here, we developed a computational framework, PredAOT, that predicts the acute oral toxicity of small compounds in mice and rats. METHODS: PredAOT is based on multiple random forest models for the accurate prediction of acute oral toxicity. A total of 6226 and 6238 compounds evaluated in mice and rats, respectively, were used to train the models. RESULTS: PredAOT has the advantage of predicting acute oral toxicity in mice and rats simultaneously, and its prediction performance is similar to or better than that of existing tools. CONCLUSION: PredAOT will be a useful tool for the quick and accurate prediction of the acute oral toxicity of small compounds in mice and rats during drug development.


Assuntos
Descoberta de Drogas , Algoritmo Florestas Aleatórias , Camundongos , Ratos , Animais
4.
Bioinformatics ; 38(2): 364-368, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34515778

RESUMO

MOTIVATION: Poor metabolic stability leads to drug development failure. Therefore, it is essential to evaluate the metabolic stability of small compounds for successful drug discovery and development. However, evaluating metabolic stability in vitro and in vivo is expensive, time-consuming and laborious. In addition, only a few free software programs are available for metabolic stability data and prediction. Therefore, in this study, we aimed to develop a prediction model that predicts the metabolic stability of small compounds. RESULTS: We developed a computational model, PredMS, which predicts the metabolic stability of small compounds as stable or unstable in human liver microsomes. PredMS is based on a random forest model using an in-house database of metabolic stability data of 1917 compounds. To validate the prediction performance of PredMS, we generated external test data of 61 compounds. PredMS achieved an accuracy of 0.74, Matthew's correlation coefficient of 0.48, sensitivity of 0.70, specificity of 0.86, positive predictive value of 0.94 and negative predictive value of 0.46 on the external test dataset. PredMS will be a useful tool to predict the metabolic stability of small compounds in the early stages of drug discovery and development. AVAILABILITY AND IMPLEMENTATION: The source code for PredMS is available at https://bitbucket.org/krictai/predms, and the PredMS web server is available at https://predms.netlify.app. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microssomos Hepáticos , Algoritmo Florestas Aleatórias , Humanos , Microssomos Hepáticos/metabolismo , Software , Descoberta de Drogas
5.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050714

RESUMO

Recently, in various fields, research into the path tracking of autonomous vehicles and automated guided vehicles has been conducted to improve worker safety, convenience, and work efficiency. For path tracking of various systems applied to autonomous driving technology, it is necessary to recognize the surrounding environment, determine technology accordingly, and develop control methods. Various sensors and artificial-intelligence-based perception methods have limitations in that they must learn a large amount of data. Therefore, a particle-filter-based path tracking algorithm using a monocular camera was used for the recognition of target RGB. The path tracking errors were calculated and a linear-quadratic-regulator-based desired steering angle were derived. The autonomous trucks were steered and driven using a pulse-width-modulation-based steering and driving motor. Based on an autonomous truck with a single steering and driving module, it was verified that the path tracking could be used in three evaluation scenarios. To compare the LQR-based path tracking control performance proposed in this paper, an elliptical path tracking scenario using a conventional sliding mode control with robust control performance was performed. The results show that the RMS of the lateral preview error of the SMC was approximately 18% larger than that of the LQR-based method.

6.
Bioinformatics ; 37(8): 1135-1139, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-33112379

RESUMO

MOTIVATION: Identification of blood-brain barrier (BBB) permeability of a compound is a major challenge in neurotherapeutic drug discovery. Conventional approaches for BBB permeability measurement are expensive, time-consuming and labor-intensive. BBB permeability is associated with diverse chemical properties of compounds. However, BBB permeability prediction models have been developed using small datasets and limited features, which are usually not practical due to their low coverage of chemical diversity of compounds. Aim of this study is to develop a BBB permeability prediction model using a large dataset for practical applications. This model can be used for facilitated compound screening in the early stage of brain drug discovery. RESULTS: A dataset of 7162 compounds with BBB permeability (5453 BBB+ and 1709 BBB-) was compiled from the literature, where BBB+ and BBB- denote BBB-permeable and non-permeable compounds, respectively. We trained a machine learning model based on Light Gradient Boosting Machine (LightGBM) algorithm and achieved an overall accuracy of 89%, an area under the curve (AUC) of 0.93, specificity of 0.77 and sensitivity of 0.93, when 10-fold cross-validation was performed. The model was further evaluated using 74 central nerve system compounds (39 BBB+ and 35 BBB-) obtained from the literature and showed an accuracy of 90%, sensitivity of 0.85 and specificity of 0.94. Our model outperforms over existing BBB permeability prediction models. AVAILABILITYAND IMPLEMENTATION: The prediction server is available at http://ssbio.cau.ac.kr/software/bbb.


Assuntos
Barreira Hematoencefálica , Aprendizado de Máquina , Transporte Biológico , Encéfalo , Permeabilidade
7.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36617002

RESUMO

This paper presents a sliding mode control (SMC)-based path-tracking algorithm for autonomous vehicles by considering model-free adaptive feedback actions. In autonomous vehicles, safe path tracking requires adaptive and robust control algorithms because driving environment and vehicle conditions vary in real time. In this study, the SMC was adopted as a robust control method to adjust the switching gain, taking into account the sliding surface and unknown uncertainty to make the control error zero. The sliding surface can be designed mathematically, but it is difficult to express the unknown uncertainty mathematically. Information of priori bounded uncertainties is needed to obtain closed-loop stability of the control system, and the unknown uncertainty can vary with changes in internal and external factors. In the literature, ongoing efforts have been made to overcome the limitation of losing control stability due to unknown uncertainty. This study proposes an integrated method of adaptive feedback control (AFC) and SMC that can adjust a bounded uncertainty. Some illustrative and representative examples, such as autonomous driving scenarios, are also provided to show the main properties of the designed integrated controller. The examples show superior control performance, and it is expected that the integrated controller could be widely used for the path-tracking algorithms of autonomous vehicles.

8.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409167

RESUMO

Melanin-concentrating hormone receptor 1 (MCHR1) has been a target for appetite suppressants, which are helpful in treating obesity. However, it is challenging to develop an MCHR1 antagonist because its binding site is similar to that of the human Ether-à-go-go-Related Gene (hERG) channel, whose inhibition may cause cardiotoxicity. Most drugs developed as MCHR1 antagonists have failed in clinical development due to cardiotoxicity caused by hERG inhibition. Machine learning-based prediction models can overcome these difficulties and provide new opportunities for drug discovery. In this study, we identified KRX-104130 with potent MCHR1 antagonistic activity and no cardiotoxicity through virtual screening using two MCHR1 binding affinity prediction models and an hERG-induced cardiotoxicity prediction model. In addition, we explored other possibilities for expanding the new indications for KRX-104130 using a transcriptome-based drug repositioning approach. KRX-104130 increased the expression of low-density lipoprotein receptor (LDLR), which induced cholesterol reduction in the gene expression analysis. This was confirmed by comparison with gene expression in a nonalcoholic steatohepatitis (NASH) patient group. In a NASH mouse model, the administration of KRX-104130 showed a protective effect by reducing hepatic lipid accumulation, liver injury, and histopathological changes, indicating a promising prospect for the therapeutic effect of NASH as a new indication for MCHR1 antagonists.


Assuntos
Reposicionamento de Medicamentos , Hepatopatia Gordurosa não Alcoólica , Animais , Cardiotoxicidade , Humanos , Aprendizado de Máquina , Camundongos , Receptores do Hormônio Hipofisário , Receptores de Somatostatina/metabolismo , Transcriptoma
9.
Bioinformatics ; 36(10): 3049-3055, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022860

RESUMO

MOTIVATION: Blockade of the human ether-à-go-go-related gene (hERG) channel by small compounds causes a prolonged QT interval that can lead to severe cardiotoxicity and is a major cause of the many failures in drug development. Thus, evaluating the hERG-blocking activity of small compounds is important for successful drug development. To this end, various computational prediction tools have been developed, but their prediction performances in terms of sensitivity and negative predictive value (NPV) need to be improved to reduce false negative predictions. RESULTS: We propose a computational framework, DeepHIT, which predicts hERG blockers and non-blockers for input compounds. For the development of DeepHIT, we generated a large-scale gold-standard dataset, which includes 6632 hERG blockers and 7808 hERG non-blockers. DeepHIT is designed to contain three deep learning models to improve sensitivity and NPV, which, in turn, produce fewer false negative predictions. DeepHIT outperforms currently available tools in terms of accuracy (0.773), MCC (0.476), sensitivity (0.833) and NPV (0.643) on an external test dataset. We also developed an in silico chemical transformation module that generates virtual compounds from a seed compound, based on the known chemical transformation patterns. As a proof-of-concept study, we identified novel urotensin II receptor (UT) antagonists without hERG-blocking activity derived from a seed compound of a previously reported UT antagonist (KR-36676) with a strong hERG-blocking activity. In summary, DeepHIT will serve as a useful tool to predict hERG-induced cardiotoxicity of small compounds in the early stages of drug discovery and development. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/krictai/deephit and https://bitbucket.org/krictai/chemtrans. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cardiotoxicidade , Canais de Potássio Éter-A-Go-Go , Aprendizado Profundo , Descoberta de Drogas , Humanos , Bloqueadores dos Canais de Potássio
10.
Biol Pharm Bull ; 44(10): 1484-1491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602556

RESUMO

Electrophoretic mobility shift assay (EMSA) technology has been widely employed for the analysis of transcription factors such as Forkhead box protein M1 (FOXM1). However, the application of high-throughput screening (HTS) in performing, such analyses are limited as it uses time consuming electrophoresis procedure and radioisotopes. In this study, we developed a FOXM1-DNA binding domain (DBD) binding assay based on time-resolved fluorescence energy transfer (TR-FRET) that enables HTS for the inhibitors of FOXM1-DNA interaction. This assay was robust, highly reproducible and could be easily miniaturized into 384-well plate format. The signal-to-background (S/B) ratio and Z' factor were calculated as 7.46 and 0.74, respectively, via a series of optimization of the assay conditions. A pilot library screening of 1019 natural compounds was performed using the FOXM1-DBD binding assay. Five hit compounds, namely, AC1LXM, BRN5, gangaleoidin, leoidin, and roemerine were identified as the inhibitors of FOXM1. In a cell viability assay, it was demonstrated that cell proliferation of FOXM1 overexpressed cell lines was suppressed in cell lines such as MDA-MB-231 and MCF-7 by five hit compounds. These results indicate that developed FOXM1-DBD binding assay can be applied to highly efficiency HTS of compound libraries.


Assuntos
Proteína Forkhead Box M1/metabolismo , Ensaios de Triagem em Larga Escala/métodos , DNA/metabolismo , Descoberta de Drogas/métodos , Transferência Ressonante de Energia de Fluorescência , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas
11.
BMC Bioinformatics ; 20(Suppl 10): 250, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138104

RESUMO

BACKGROUND: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could facilitate drug discovery by filtering out toxic drug candidates. RESULT: In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321, and a specificity of 0.967, when ten-fold cross-validation was performed. The model was further evaluated using ten drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models. CONCLUSION: The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred .


Assuntos
Cardiotoxicidade/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Redes Neurais de Computação , Animais , Área Sob a Curva , Bases de Dados Genéticas , Canais de Potássio Éter-A-Go-Go/química , Cobaias , Humanos , Aprendizado de Máquina , Curva ROC
12.
Bioorg Med Chem Lett ; 29(4): 577-580, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30611618

RESUMO

The synthesis and biological evaluation as potential urotensin-II receptor antagonists of a series of 5-arylfuran-2-carboxamide derivatives 1, bearing a 4-(3-chloro-4-(piperidin-4-yloxy)benzyl)piperazin-1-yl group, are described. The results of a systematic SAR investigation of furan-2-carboxamides with C-5 aryl groups possessing a variety of aryl ring substituents led to identification of the 3,4-difluorophenyl analog 1y as a highly potent UT antagonist with an IC50 value of 6 nM. In addition, this substance was found to display high metabolic stability, and low hERG inhibition and cytotoxicity, and to have an acceptable PK profile.


Assuntos
Furanos/síntese química , Furanos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Área Sob a Curva , Linhagem Celular , Furanos/química , Furanos/farmacocinética , Concentração Inibidora 50 , Relação Estrutura-Atividade
13.
Bioorg Chem ; 92: 103261, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542718

RESUMO

Inhibition of IKK-ß (inhibitor of nuclear factor kappa-B kinase subunit beta) has been broadly documentedas a promising approach for treatment of acute and chronic inflammatory diseases, cancer, and autoimmune diseases. Recently, we have identified a novel class of thiazolidine-2,4-diones as structurally novel modulators for IKK-ß. Herein, we report a hit optimization study via analog synthesis strategy aiming to acquire more potent derivative(s), probe the structure activity relationship (SAR), and get reasonable explanations for the elicited IKK-ß inhibitory activities though an in silico docking simulation study. Accordingly, a new series of eighteen thiazolidine-2,4-dione derivatives was rationally designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as noteworthy IKK-ß potential modulators. Successfully, new IKK-ß potent modulators were obtained, including the most potent analog up-to-date 7m with IC50 value of 260 nM. A detailed structure activity relationship (SAR) was discussed and a mechanistic study for 7m was carried out indicating its irreversible inhibition mode with IKK-ß (Kinact value = 0.01 (min-1). Furthermore, the conducted in silico simulation study provided new insights for the binding modes of this novel class of modulators with IKK-ß.


Assuntos
Desenho de Fármacos , Quinase I-kappa B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Quinase I-kappa B/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
14.
Biol Pharm Bull ; 40(9): 1454-1462, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28867728

RESUMO

Although enzyme-linked immunosorbent assay (ELISA) technology has been widely accepted for binding assays against the polo-box domain (PBD) of polo-like kinase-1 (Plk1), these assays have a limitation-related heterogeneous procedure, such as multiple incubations and washing steps to apply high-throughput screenings (HTSs). In the present study, a Plk1-PBD binding assay based on time-resolved fluorescence energy transfer (TR-FRET) was developed for HTS of PBD-binding inhibitors. The TR-FRET-based Plk1-PBD binding assay is sensitive and robust and can be miniaturized into the 384-well plate-based format. Compared with the ELISA-based Plk1-PBD binding assay (Z' factor, 0.53; signal-to-background ratio, 4.19), the TR-FRET-based Plk1-PBD binding assay improved the Z' factor (0.72) and signal-to-background ratio (8.16). Using TR-FRET based Plk1-PBD binding assay, pilot library screening of 1019 natural compounds was conducted and five hit compounds such as haematoxylin, verbascoside, menadione, lithospermic acid and (1,3-dioxolo[4,5-g]isoquinolinium 5,6,7,8-tetrahydro-4-methoxy-6,6-dimethyl-5-[2-oxo-2-(2-pyridinyl)ethyl]-iodide) (DITMD) were identified as Plk1-PBD inhibitor. In a functional assay to validate the hit compounds, five hit compounds exhibited suppression of HeLa cells proliferation. These results suggest that TR-FRET-based Plk1-PBD binding assay can be applied for an efficient and less time-consuming HTS of compound libraries.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Biotina/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Quinase 1 Polo-Like
15.
Mol Cell Biochem ; 422(1-2): 151-160, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613164

RESUMO

Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predominantly mediated by G protein-coupled receptor kinase 5 (GRK5). In the present study, we found that UII rapidly and strongly stimulated nuclear export of HDAC5 and nuclear import of NF-κB in H9c2 cells overexpressing the urotensin II receptor (H9c2UT). Hence, we hypothesized that GRK5 and its signaling pathway may play a role in UII-mediated cellular hypertrophy. H9c2UT cells were transduced with a GRK5 small hairpin RNA interference recombinant lentivirus, resulting in the down-regulation of GRK5. Under UII stimulation, reduced levels of GRK5 in H9c2UT cells led to suppression of UII-mediated HDAC5 phosphorylation and activation of the NF-κB signaling pathway. In contrast, UII-mediated activations of ERK1/2 and GSK3α/ß were not affected by down-regulation of GRK5. In a cellular hypertrophy assay, down-regulation of GRK5 significantly suppressed UII-mediated hypertrophy of H9c2UT cells. Furthermore, UII-mediated cellular hypertrophy was inhibited by amlexanox, a selective GRK5 inhibitor, in H9c2UT cells and neonatal cardiomyocytes. Our results suggest that GRK5 may be involved in a UII-mediated hypertrophic response via activation of NF-κB and HDAC5 at least in part by ERK1/2 and GSK3α/ß-independent pathways.


Assuntos
Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Urotensinas/farmacologia , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Quinase 5 de Receptor Acoplado a Proteína G/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos
16.
Bioorg Med Chem Lett ; 26(19): 4684-4686, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27597245

RESUMO

Members of a series of benzo[b]thiophene-2-carboxamide derivatives, possessing an N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl) group, were synthesized and evaluated as urotensin-II receptor antagonists. The results show that these substances have potent UT binding affinities. Observations made in a systematic SAR investigation of the effects of a variety of substituents (R(1) and R(2)) at the 5- and 6-positions in the benzo[b]thiophene-2-carboxamide moiety on UT binding affinities led to identification of the 5-cyano analog 7f as a highly potent UT antagonist with an IC50 value of 25nM. Despite having a good metabolic stability, 7f is a potent inhibitor of CYP isozyme and displays an unsuitable PK profile.


Assuntos
Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiofenos/farmacologia , Humanos , Concentração Inibidora 50 , Tiofenos/química
17.
Biol Pharm Bull ; 39(4): 547-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040627

RESUMO

A dual readout assay based on fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) exhibits many advantages over single assay technology in terms of screening quality and efficiency. In this study, we developed a dual readout assay combining FP and TR-FRET to identify ribosomal S6 kinase 1 (RSK1) inhibitors. This dual readout assay can monitor both FP and TR-FRET signals from a single RSK1 kinase reaction by using the immobilized metal affinity for phosphochemical (IMAP)-based assay. The Z' value and signal to background (S/B) ratio were 0.85 and 4.0 using FP, and 0.79 and 10.6 using TR-FRET, which led to performance of a pilot library screening against the drug repositioning set consisting of 2320 compounds with a reasonable reproducibility. From this screening, we identified 16 compounds showing greater than 50% inhibition against RSK1 for both FP and TR-FRET; 6 compounds with greater than 50% inhibition only for FP; and 4 compounds with greater than 50% inhibition only for TR-FRET. In a cell-based functional assay to validate the hit compounds, 10 compounds identified only in a single assay had little effect on the RSK-mediated phosphorylation of liver kinase B1, whereas 5 compounds showing greater than 80% inhibition for both FP and TR-FRET reduced the phosphorylation of liver kinase B1. These results demonstrate that the dual readout assay can be used to identify hit compounds by subsequently monitoring both FP and TR-FRET signals from one RSK1 reaction.


Assuntos
Ensaios de Triagem em Larga Escala , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Bioensaio , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
18.
Bioorg Med Chem Lett ; 24(24): 5832-5835, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25452001

RESUMO

The preparation and SAR profile of thieno[3,2-b]pyridinyl urea derivatives as novel and potent urotensin-II receptor antagonists are described. An activity optimization study, probing the effects of substituents on thieno[3,2-b]pyridinyl core and benzyl group of the piperidinyl moiety, led to the identification of p-fluorobenzyl substituted thieno[3,2-b]pyridinyl urea 6n as a highly potent UT antagonist with an IC50 value of 13nM. Although 6n displays good metabolic stability and low hERG binding activity, it has an unacceptable oral bioavailability.


Assuntos
Piridinas/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiofenos/síntese química , Ureia/análogos & derivados , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/metabolismo , Ureia/síntese química , Ureia/química , Ureia/metabolismo
19.
Bioorg Med Chem Lett ; 24(17): 4080-3, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25124116

RESUMO

Erythropoietin-producing hepatocellular receptor tyrosine kinase subtype A2 (EphA2) is an attractive therapeutic target for suppressing tumor progression. In our efforts to discover novel small molecules to inhibit EphA2, a class of compound based on 4-substituted quinazoline containing 7-(morpholin-2-ylmethoxy) group was identified as a novel hit by high throughput screening campaign. Structural modification of parent quinazoline scaffolds by introducing substituents on aniline displayed potent inhibitory activities toward EphA2.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor EphA2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Receptor EphA2/metabolismo , Relação Estrutura-Atividade
20.
Comput Struct Biotechnol J ; 23: 2116-2121, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38808129

RESUMO

De novo drug design aims to rationally discover novel and potent compounds while reducing experimental costs during the drug development stage. Despite the numerous generative models that have been developed, few successful cases of drug design utilizing generative models have been reported. One of the most common challenges is designing compounds that are not synthesizable or realistic. Therefore, methods capable of accurately assessing the chemical structures proposed by generative models for drug design are needed. In this study, we present AnoChem, a computational framework based on deep learning designed to assess the likelihood of a generated molecule being real. AnoChem achieves an area under the receiver operating characteristic curve score of 0.900 for distinguishing between real and generated molecules. We utilized AnoChem to evaluate and compare the performances of several generative models, using other metrics, namely SAscore and Fréschet ChemNet distance (FCD). AnoChem demonstrates a strong correlation with these metrics, validating its effectiveness as a reliable tool for assessing generative models. The source code for AnoChem is available at https://github.com/CSB-L/AnoChem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA