RESUMO
BACKGROUND: Sheeppox (SPP) and goatpox (GTP) caused by sheeppox virus (SPPV) and goatpox virus (GTPV), respectively of the genus Capripoxvirus in the family Poxviridae, are severely afflicting small ruminants' production systems in Africa and Asia. In endemic areas, SPP and GTP are controlled using vaccination with live attenuated vaccines derived from SPPV, GTPV or Lumpy skin disease virus (LSDV). Sometimes outbreaks occur following vaccination. In order to successfully control the spread of the virus, it is essential to identify whether the animals were infected by the field strain and the vaccine did not provide sufficient protection. Alternatively, in some cases the vaccine strain may cause adverse reactions in vaccinated animals or in rare occasions, re-gain virulence. Thus, diagnostic tools for differentiation of virulent strains from attenuated vaccine strains of the virus are needed. The aim of this study was to identify an appropriate diagnostic target region in the capripoxvirus genome by comparing the genomic sequences of SPPV field isolates with those of the most widely used SPP vaccine strains. RESULTS: A unique 84 base pair nucleotide deletion located between the DNA ligase gene and the VARV B22R homologue gene was found only in SPPV vaccines derived from the Romanian and Yugoslavian RM/65 strains and absent in SPPV field isolates originated from various geographical locations of Asia and Africa. In addition, we developed and evaluated a conventional PCR assay, exploiting the targeted intergenic region to differentiate SPPV vaccine virus from field isolates. The assay produced an amplicon size of 218 bp for the vaccine strains, while the SPPV field isolates resulted in a 302 bp PCR fragment. The assay showed good sensitivity and specificity, and the results were in full agreement with the sequencing data of the PCR amplicons. CONCLUSION: The developed assay is an improvement of currently existing diagnostic tools and, when combined with a capripox virus species-specific assay, will enhance SPP and GTP diagnosis and surveillance and facilitate epidemiological investigations in countries using live attenuated SPP vaccines. In addition, for laboratories with limited resources, the assay provides a simple and cost-effective alternative for sequencing.
Assuntos
Capripoxvirus/imunologia , Doenças das Cabras/prevenção & controle , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/imunologia , Animais , Capripoxvirus/classificação , Capripoxvirus/genética , Linhagem Celular , Cabras , Reação em Cadeia da Polimerase , Ovinos , Especificidade da EspécieRESUMO
The increasing incidence of West Nile virus (WNV) in the Euro-Mediterranean area warrants the implementation of effective surveillance programs in animals. A crucial step in the fight against the disease is the evaluation of the capacity of the veterinary labs to accurately detect the infection in animal populations. In this context, the animal virology network of the MediLabSecure project organized an external quality assessment (EQA) to evaluate the WNV molecular and serological diagnostic capacities of beneficiary veterinary labs. Laboratories from 17 Mediterranean and Black Sea countries participated. The results of the triplex real time RT-PCR for simultaneous detection and differentiation of WNV lineage 1 (L1), lineage 2 (L2) and Usutu virus (USUV) were highly satisfactory, especially for L1 and L2, with detection rates of 97.9% and 100%, respectively. For USUV, 75% of the labs reported correct results. More limitations were observed for the generic detection of flaviviruses using conventional reverse-transcription polymerase chain reaction (RT-PCR), since only 46.1% reported correct results in the whole panel. As regards the serological panel, the results were excellent for the generic detection of WNV antibodies. More variability was observed for the specific detection of IgM antibodies with a higher percentage of incorrect results mainly in samples with low titers. This EQA provides a good overview of the WNV (and USUV) diagnostic performance of the involved veterinary labs and demonstrates that the implemented training program was successful in upgrading their diagnostic capacities.
RESUMO
This study describes the genetic characterization of serotype A viruses collected during outbreaks of foot-and-mouth disease (FMD) that occurred in Algeria in 2017. These are the first reports of clinical cases due to this serotype in the country since 1977. One complete genomic sequence (comprising 8,119 nucleotides) and three additional near-complete genomic sequences were generated. Phylogenetic analyses demonstrated that these viruses were classified within the A/AFRICA/G-IV lineage, most closely related to viruses circulating in Nigeria between 2009 and 2015. These unexpected results motivate further studies to define the precise pathways by which this viral lineage has been introduced into North Africa in order to understand risks of future disease incursions into the region.
Assuntos
Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Vírus da Febre Aftosa/genética , Febre Aftosa/epidemiologia , Argélia/epidemiologia , Animais , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Bovinos , Doenças dos Bovinos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Febre Aftosa/virologia , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , SorogrupoRESUMO
Sheep poxvirus (SPPV), goat poxvirus (GTPV) and lumpy skin disease virus (LSDV) affect small ruminants and cattle causing sheeppox (SPP), goatpox (GTP) and lumpy skin disease (LSD) respectively. In endemic areas, vaccination with live attenuated vaccines derived from SPPV, GTPV or LSDV provides protection from SPP and GTP. As live poxviruses may cause adverse reactions in vaccinated animals, it is imperative to develop new diagnostic tools for the differentiation of SPPV field strains from attenuated vaccine strains. Within the capripoxvirus (CaPV) homolog of the variola virus B22R gene, we identified a unique region in SPPV vaccines with two deletions of 21 and 27 nucleotides and developed a High-Resolution Melting (HRM)-based assay. The HRM assay produces four distinct melting peaks, enabling the differentiation between SPPV vaccines, SPPV field isolates, GTPV and LSDV. This HRM assay is sensitive, specific, and provides a cost-effective means for the detection and classification of CaPVs and the differentiation of SPPV vaccines from SPPV field isolates.