Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 53: 102703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591367

RESUMO

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.


Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Rutênio/farmacologia , Rutênio/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835489

RESUMO

Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma , Dendrímeros , Humanos , Feminino , Dendrímeros/química , Cobre/química , Metotrexato , Ligantes , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fluoruracila , Linhagem Celular Tumoral
3.
Biomacromolecules ; 22(11): 4582-4591, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613701

RESUMO

Accumulation of misfolded α-synuclein (α-syn) is a hallmark of Parkinson's disease (PD) thought to play important roles in the pathophysiology of the disease. Dendritic systems, able to modulate the folding of proteins, have emerged as promising new therapeutic strategies for PD treatment. Dendrimers have been shown to be effective at inhibiting α-syn aggregation in cell-free systems and in cell lines. Here, we set out to investigate the effects of dendrimers on endogenous α-syn accumulation in disease-relevant cell types from PD patients. For this purpose, we chose cationic carbosilane dendrimers of bow-tie topology based on their performance at inhibiting α-syn aggregation in vitro. Dopamine neurons were differentiated from induced pluripotent stem cell (iPSC) lines generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display abnormal accumulation of α-syn, and from healthy individuals as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations of dendrimers was effective at preventing abnormal accumulation and aggregation of α-syn. Our results in a genuinely human experimental model of PD highlight the therapeutic potential of dendritic systems and open the way to developing safe and efficient therapies for delaying or even halting PD progression.


Assuntos
Dendrímeros , Doença de Parkinson , alfa-Sinucleína , Dendrímeros/farmacologia , Neurônios Dopaminérgicos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Silanos , alfa-Sinucleína/genética
4.
Chemistry ; 26(34): 7609-7621, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32259327

RESUMO

The most common denominator of many of the neurodegenerative diseases is badly folded protein accumulation, which results in the formation of insoluble protein deposits located in different parts of the organism, causing cell death and tissue degeneration. Dendritic systems have turned out to be a promising new therapeutic approach for the treatment of these diseases due to their ability to modulate the folding of these proteins. With this perspective, and focused on type 2 diabetes (T2D), characterized by the presence of deposits containing the amyloidogenic islet amyloid polypeptide (IAPP), we demonstrate how different topologies of cationic carbosilane dendrimers inhibit the formation of insoluble protein deposits in pancreatic islets isolated from transgenic Tg-hIAPP mice. Also, the results obtained by the modification of dendritic carbosilane wedges with the chemical chaperone 4-phenylbutyric acid (4-PBA) at the focal point confirmed their potential as anti-amyloid agents with a concentration efficiency in their therapeutic action five orders of magnitude lower than that observed for free 4-PBA. Computational studies, which determined the main interaction between IAPP and dendrimers at the atomic level, support the experimental work.


Assuntos
Amiloidose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/química , Fenilbutiratos/química , Silanos/química , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos
5.
Inorg Chem ; 59(19): 14171-14183, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32930592

RESUMO

The importance of ion pairing in different fields of chemistry is widely recognized. In this work, we have synthesized a set of cationic p-cymene ruthenium complexes of general formula [(p-cym)Ru(L')(κ2-O^N-L)]X (p-cym = p-cymene; L' = N-methylimidazole (MeIm), N-ethylpiperidylimidazole (EpipIm), 1,3,5-triaza-7-phosphaadamantane (PTA); L = 2-(1H-benzimidazol-2-yl)phenolato (L1), 2-(1,3-benzothiazol-2-yl)phenolato (L2); X = Cl-, BF4-, OTf-, BPh4-). X-ray diffraction studies on selected complexes revealed relatively strong anion-cation interactions in the solid state mainly based on N-H···X (X = Cl, F, O) and C-H···π interactions, also observed in the DFT-modeled complexes in the gas phase. Moreover, NMR studies showed that they exist as intimate ion pairs in solution and, remarkably, as head-to-tail quadruples in the particular case of the cation [(p-cym)Ru(MeIm)(κ2- O^N-L1)]+ ([1]+) with Cl- and BPh4- as counteranions. Furthermore, a value of ΔG = -2.9 kcal mol-1 at 299 K has been estimated for the equilibrium {[1]BPh4···[1]BPh4} ⇆ 2{[1]+···BPh4-} in concentrated CDCl3 solutions. In addition, preliminary studies concerning the cytotoxic properties against HeLa cell lines of the derivatives suggested a positive effect derived from the presence of the lipophilic BPh4- anion and also from the NH group of the benzimidazolyl fragment.

6.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526993

RESUMO

Ruthenium atoms located in the surfaces of carbosilane dendrimers markedly increase their anti-tumor properties. Carbosilane dendrimers have been widely studied as carriers of drugs and genes owing to such characteristic features as monodispersity, stability, and multivalence. The presence of ruthenium in the dendrimer structure enhances their successful use in anti-cancer therapy. In this paper, the activity of dendrimers of generation 1 and 2 against 1301 cells was evaluated using Transmission Electron Microscopy, comet assay and Real Time PCR techniques. Additionally, the level of reactive oxygen species (ROS) and changes of mitochondrial potential values were assessed. The results of the present study show that ruthenium dendrimers significantly decrease the viability of leukemia cells (1301) but show low toxicity to non-cancer cells (peripheral blood mononuclear cells-PBMCs). The in vitro test results indicate that the dendrimers injure the 1301 leukemia cells via the apoptosis pathway.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Rutênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dendrímeros/química , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química
7.
Mol Pharm ; 16(6): 2661-2674, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31009225

RESUMO

Over the last decades, multidrug-resistant bacteria have emerged and spread, increasing the number of bacteria, against which commonly used antibiotics are no longer effective. It has become a serious public health problem whose solution requires medical research in order to explore novel effective antimicrobial molecules. On the one hand, antimicrobial peptides (AMPs) are regarded as good alternatives because of their generally broad-spectrum activities, but sometimes they can be easily degraded by the organism or be toxic to animal cells. On the other hand, cationic carbosilane dendrons, whose focal point can be functionalized in many different ways, have also shown good antimicrobial activity. In this work, we synthetized first- and second-generation cationic carbosilane dendrons with a maleimide molecule on their focal point, enabling their functionalization with three different AMPs. After different microbiology studies, we found an additive effect between first-generation dendron and AMP3 whose study reveals three interesting effects: (i) bacteria aggregation due to AMP3, which could facilitate bacteria detection or even contribute to antibacterial activity by preventing host cell attack, (ii) bacteria disaggregation capability of second-generation cationic dendrons, and (iii) a higher AMP3 aggregation ability when dendrons were added previously to peptide treatment. These compounds and their different effects observed over bacteria constitute an interesting system for further mechanism studies.


Assuntos
Anti-Infecciosos/química , Dendrímeros/química , Nanoconjugados/química , Silanos/química , Maleimidas/química
8.
Inorg Chem ; 54(18): 8943-56, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26360407

RESUMO

A synthetic protocol has been designed to incorporate the DO3A ligand to the focal point of cationic or anionic carbosilane dendrons, affording a set of bifunctional chelating agents (BFCAs) useful for potential biomedical applications. The complexation behavior study of ionic BFCAs has been accomplished by UV-vis and electron paramagnetic resonance spectroscopy as well as potentiometric titrations. The presence of the dendron branches modifies the complexation capacity of the macrocyclic ring with respect to that of the 1,4,7,10-tetraazacyclodocecane-N,N',N″,N‴-tetraacetic acid (DOTA) ligand. Also, a different behavior has been observed in the carboxylate-terminated dendrons against analogous sulfonate- or amine-terminated dendrons in the contribution of the branches and peripheral groups to the coordination modes. The presence or not of Cu-S2O2 coordination sites and the generation can be important factors to take into account for considering a particular biomedical application.


Assuntos
Acetatos/química , Compostos Aza/química , Quelantes/química , Quelantes/síntese química , Cobre/química , Dendrímeros/química , Dendrímeros/síntese química , Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Técnicas de Química Sintética , Espectroscopia de Ressonância de Spin Eletrônica
9.
New Microbiol ; 38(2): 245-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25938749

RESUMO

Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Técnicas de Tipagem Bacteriana/métodos , Sangue/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/química , Bactérias/classificação , Infecções Bacterianas/sangue , Humanos
11.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703928

RESUMO

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Assuntos
Apoptose , Dendrímeros , Polietilenoglicóis , Polifenóis , RNA Interferente Pequeno , Humanos , Dendrímeros/química , Dendrímeros/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Células A549 , Apoptose/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/administração & dosagem , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Movimento Celular/efeitos dos fármacos , Portadores de Fármacos/química , Silanos/química , Transfecção/métodos , Linhagem Celular Tumoral
12.
Sci Rep ; 14(1): 5946, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467715

RESUMO

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.


Assuntos
Ácidos Cafeicos , Dendrímeros , Ácidos Nucleicos , Humanos , Albumina Sérica Humana/metabolismo , Dendrímeros/química , Silanos/química
13.
Front Vet Sci ; 11: 1378609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835889

RESUMO

Death initiates a cascade of physiological and biochemical alterations in organs and tissues, resulting in microscopic changes that challenge the histopathological evaluation. Moreover, the brain is particularly susceptible to artifacts owing to its unique composition and its location within the cranial vault. The aim of this study was to compile and illustrate the microscopic changes in the central nervous system (CNS) of rats subjected to delayed postmortem fixation. It also scrutinizes the influence of exsanguination and cooling methods on the initiation and progression of these alterations. Twenty-four Wistar Han outbred rats (RccHan™: WIST) were sacrificed and stored either at room temperature (18-22°C) or under refrigeration (2-4°C). Necropsies were conducted at different time points postmortem (i.e., 0.5 h, 1 h, 4 h, 8 h, 12 h, 24 h, 36 h, 48 h, 7 days and 14 days). Brain sections underwent simultaneous digital evaluation by 14 pathologists until a consensus was reached on terminology, key findings, and intensity levels. Microscopic observations varied among cell types. Glial cells were similarly affected throughout the CNS and showed pericellular halo, chromatin condensation and nuclear shrinkage. Neurons showed two types of postmortem changes as most of them showed progressive shrinkage, cytoplasmic dissolution and karyorrhexis whereas others acquired a dark-neuron-like appearance. Neuronal changes showed marked differences among neuroanatomical locations. Additional postmortem changes encompassed: granulation and microcavitation in neuropil and white matter; retraction spaces; detachment of ependyma, choroid plexus, and leptomeninges. Severity of findings after 48 h at room temperature was higher than after seven days under refrigeration and similar to or slightly lower than after 14 days under refrigeration. No clear differences were observed related to the sex or weight of the animals or their exsanguination status. This work elucidates the onset and progression of autolytic changes in the brains of Wistar Han rats, offering insights to accurately identify and enhance the histopathological evaluation.

14.
Environ Sci Pollut Res Int ; 30(35): 83678-83686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344718

RESUMO

Rainfall-runoff events occurring in vineyard fields can result in pesticide ground losses and the subsequent pollution of surface water bodies, derivate from the crop protection spray applications. In this study, the capacity of vegetated buffer strips (BS) to prevent surface water pollution due to the application of five fungicide products typically used in vineyards (copper, dimethomorph, oxathiapiprolin, zoxamide, acibenzolar-s-methyl, and laminarin) following a simulated run-off event has been assessed, and compared to that from a bare ground soil (BG). Two strips (5 m in length, each), one with vegetation and the other without were built up, and two different experiments were performed, a runoff event and a soil fungicide degradation kinetic evaluation. The runoff results show that fungicide mass retention in the strips ranged from 73 to 98% and that the presence of vegetation in BS increased the fungicide mass retention in the strips by almost 10% (on average) in comparison to the unvegetated strip. Moreover, soil degradation studies highlighted that the presence of vegetation reduces significantly the half-time life of almost all the studied fungicides by 55%, on average. Eight fungicide transformation products (TPs) were identified following a runoff event in the soil strips, but the abundance of these TPs was up to 78% lower in vegetated strips. These results highlight the effectiveness of using vegetated buffer zones in vineyards to protect aquatic ecosystem pollution.


Assuntos
Fungicidas Industriais , Poluentes do Solo , Poluentes Químicos da Água , Solo , Agricultura/métodos , Fazendas , Poluentes Químicos da Água/análise , Ecossistema , Poluentes do Solo/análise , Movimentos da Água
15.
Artigo em Inglês | MEDLINE | ID: mdl-36417901

RESUMO

Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Dendrímeros , Nanoestruturas , Doenças Neurodegenerativas , Humanos , Preparações Farmacêuticas
16.
Med Clin (Barc) ; 160(12): 561-563, 2023 06 23.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37127459

RESUMO

INTRODUCTION: The objective of our study was to evaluate the frequency of isolation of respiratory infection by non-tuberculous mycobacteria (NTM) and to analyze the clinical-epidemiological characteristics of patients infected with NTM. METHODS: Retrospective observational study of 83 respiratory samples with NTM isolation from 62 patients between 2015 and 2021 at the Doctor Balmis General University Hospital. RESULTS: MNT respiratory infection criteria were met in 15 patients (24.2%). The most frequently isolated NTM's in patients who met infection criteria were those belonging to the Mycobacterium avium complex. Of the 15 infected patients, 11 (73.3%) had respiratory comorbidity and the most frequent respiratory comorbidity in infected patients was bronchiectasis (5 patients; 45.5%). Of the infected patients, targeted antibiotic treatment was prescribed in 83.3% of the cases. CONCLUSION: One in 7 patients with NTM isolation meets infection criteria. The main role of the species of Mycobacterium avium complex is corroborated, and the relevance of lung structural damage in the development of lung disease due to NTM.


Assuntos
Bronquiectasia , Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Pneumonia Bacteriana , Infecções Respiratórias , Humanos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Micobactérias não Tuberculosas , Complexo Mycobacterium avium , Pneumopatias/diagnóstico , Pneumopatias/epidemiologia , Pneumopatias/microbiologia , Bronquiectasia/diagnóstico , Bronquiectasia/epidemiologia
17.
Int J Pharm ; 636: 122784, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858135

RESUMO

The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Portadores de Fármacos , Estrutura Molecular , Rutênio/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Simulação por Computador , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais
18.
Colloids Surf B Biointerfaces ; 227: 113371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244201

RESUMO

One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.


Assuntos
Antineoplásicos , Dendrímeros , Neoplasias , Rutênio , Humanos , Dendrímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Doxorrubicina/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Lipídeos
19.
Chemosphere ; 303(Pt 1): 134975, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595116

RESUMO

Several fungicides, such as copper and organic products (synthetic or natural), are currently being used in vineyards to control downy mildew (Plasmopara viticola) resulting in soil, surface water, and groundwater pollution. This study aims to assess the effectiveness of using cover crops as an agricultural practice in vineyards to protect soil and groundwater pollution. For that purpose, we performed different soil column studies to quantify soil leaching of selected fungicides (copper, dimethomorph, oxathiapiprolin, zoxamide, acibenzolar-s-methyl, and laminarin) following a rainfall event after a conventional fungicide vineyard application. Two types of vineyard soils (loam and sandy-loam soil textures) and three ground covers (bare ground, monoculture cover, and polyculture cover) were assessed. These studies were completed with hydroponic assays to check the effectiveness of cover roots in the fungicide degradation. Mass balance results show that whereas 3 fungicides (Cu, zoxamide, and dimethomorph) were leached through sandy soil columns, only copper was leached from loam soil columns. The effect of cover crops was only significant for Cu and zoxamide when fungicides were applied 24 h before the rain event, reducing the fungicide leaching by 30%. Hydroponic studies showed that cover roots enhanced the kinetic rates of almost all tested fungicides by 5-467%, suggesting that they are relevant to improving the degradation of fungicides in the soil column. These results are relevant to drawing up recommendations on the use of cover crops to protect soil and groundwater pollution by fungicides.


Assuntos
Fungicidas Industriais , Água Subterrânea , Poluentes do Solo , Cobre/análise , Produtos Agrícolas , Fazendas , Fungicidas Industriais/análise , Solo , Poluentes do Solo/análise
20.
Pharmaceutics ; 14(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057050

RESUMO

The COVID-19 pandemic showed more deeply the need of our society to provide new therapeutic strategies to fight infectious diseases, not only against currently known illnesses, where common antibiotics and drugs appear to be not fully effective, but also against new infectious threats that may arise [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA