Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7992): 653-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993717

RESUMO

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Assuntos
Amelogênese Imperfeita , Autoanticorpos , Doença Celíaca , Poliendocrinopatias Autoimunes , Humanos , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/imunologia , Autoanticorpos/imunologia , Doença Celíaca/complicações , Doença Celíaca/imunologia , Imunoglobulina A/imunologia , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Ameloblastos/metabolismo , Esmalte Dentário/imunologia , Esmalte Dentário/metabolismo , Proteína AIRE/deficiência , Antígenos/imunologia , Antígenos/metabolismo , Intestinos/imunologia , Intestinos/metabolismo
2.
J Biol Chem ; 299(8): 104978, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390987

RESUMO

The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind ß2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for ß2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the ß2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking ß2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by ß2 integrins.


Assuntos
Toxina Adenilato Ciclase , Antígenos CD18 , Triptofano , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis , Antígenos CD18/genética , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Sequência Conservada
3.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715108

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Assuntos
Movimento Celular , Proliferação de Células , Receptores de Interleucina-6 , Humanos , Proliferação de Células/efeitos dos fármacos , Receptores de Interleucina-6/metabolismo , Movimento Celular/efeitos dos fármacos , Células HEK293 , Linhagem Celular Tumoral , Ligação Proteica/efeitos dos fármacos
4.
Microb Pathog ; 181: 106200, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315629

RESUMO

The membrane-damaging RTX family cytotoxin RtxA is a key virulence factor of the emerging pediatric pathogen Kingella kingae, but little is known about the mechanism of RtxA binding to host cells. While we have previously shown that RtxA binds cell surface glycoproteins, here we demonstrate that the toxin also binds different types of gangliosides. The recognition of gangliosides by RtxA depended on sialic acid side groups of ganglioside glycans. Moreover, binding of RtxA to epithelial cells was significantly decreased in the presence of free sialylated gangliosides, which inhibited cytotoxic activity of the toxin. These results suggest that RtxA utilizes sialylated gangliosides as ubiquitous cell membrane receptor molecules on host cells to exert its cytotoxic action and support K. kingae infection.


Assuntos
Toxinas Bacterianas , Kingella kingae , Humanos , Criança , Kingella kingae/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Fatores de Virulência/metabolismo , Citotoxinas/metabolismo
5.
J Biol Chem ; 297(1): 100833, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051233

RESUMO

The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I-V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel ß-rolls. Previous work indicated that the CR3-binding structure comprises the interface of ß-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132-1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562-1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V ß-roll still supported formation of the CR3-binding structure at the interface of ß-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295-1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/metabolismo , Acilação , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/metabolismo , Células CHO , Cálcio/metabolismo , Cricetulus , Epitopos/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Relação Estrutura-Atividade , Células THP-1
6.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293453

RESUMO

The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the ß2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the ß2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/metabolismo , Fatores de Virulência de Bordetella , Hemaglutininas/metabolismo , Antígenos CD18 , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Antígeno de Macrófago 1 , Integrinas , Heparina , Peptídeo Hidrolases , Glicosaminoglicanos
7.
J Biol Chem ; 295(28): 9349-9365, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393579

RESUMO

The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLß2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMß2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella , Citosol/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/metabolismo , Animais , Células CHO , Cricetulus , Feminino , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , Células THP-1
8.
J Biol Chem ; 295(28): 9268-9280, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32461253

RESUMO

In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.


Assuntos
Aciltransferases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Linhagem Celular , Camundongos
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769101

RESUMO

The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective membrane pores that account for the hemolytic activity of CyaA. The pore-forming activity contributes to the overall cytotoxic effect of CyaA in vitro, and it has previously been proposed to synergize with the cAMP-elevating activity in conferring full virulence on B. pertussis in the mouse model of pneumonic infection. CyaA primarily targets myeloid phagocytes through binding of their complement receptor 3 (CR3, integrin αMß2, or CD11b/CD18). However, with a reduced efficacy, the toxin can promiscuously penetrate and permeabilize the cell membrane of a variety of non-myeloid cells that lack CR3 on the cell surface, including airway epithelial cells or erythrocytes, and detectably intoxicates them by cAMP. Here, we used CyaA variants with strongly and selectively enhanced or reduced pore-forming activity that, at the same time, exhibited a full capacity to elevate cAMP concentrations in both CR3-expressing and CR3-non-expressing target cells. Using B. pertussis mutants secreting such CyaA variants, we show that a selective enhancement of the cell-permeabilizing activity of CyaA does not increase the overall virulence and lethality of pneumonic B. pertussis infection of mice any further. In turn, a reduction of the cell-permeabilizing activity of CyaA did not reduce B. pertussis virulence any importantly. These results suggest that the phagocyte-paralyzing cAMP-elevating capacity of CyaA prevails over the cell-permeabilizing activity of CyaA that appears to play an auxiliary role in the biological activity of the CyaA toxin in the course of B. pertussis infections in vivo.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , Coqueluche/metabolismo , Animais , Bordetella pertussis/fisiologia , Permeabilidade da Membrana Celular , AMP Cíclico/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fagócitos/metabolismo , Fagócitos/microbiologia , Ovinos , Virulência , Coqueluche/microbiologia , Coqueluche/patologia
10.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445770

RESUMO

The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air-liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC- toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT- toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.


Assuntos
Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucina-5AC/metabolismo , Coqueluche/metabolismo , Coqueluche/microbiologia
11.
Proc Natl Acad Sci U S A ; 114(9): E1641-E1650, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196895

RESUMO

The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.


Assuntos
Motivos de Aminoácidos/fisiologia , Esmalte Dentário/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Amelogenina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas do Esmalte Dentário/metabolismo , Durapatita/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Masculino , Camundongos , Ligação Proteica/fisiologia
12.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260488

RESUMO

The Gram-negative coccobacillus Kingella kingae is increasingly recognized as an important invasive pediatric pathogen that causes mostly bacteremia and skeletal system infections. K. kingae secretes an RtxA toxin that belongs to a broad family of the RTX (Repeats in ToXin) cytotoxins produced by bacterial pathogens. Recently, we demonstrated that membrane cholesterol facilitates interaction of RtxA with target cells, but other cell surface structures potentially involved in toxin binding to cells remain unknown. We show that deglycosylation of cell surface structures by glycosidase treatment, or inhibition of protein N- and O-glycosylation by chemical inhibitors substantially reduces RtxA binding to target cells. Consequently, the deglycosylated cells were more resistant to cytotoxic activity of RtxA. Moreover, experiments on cells expressing or lacking cell surface integrins of the ß2 family revealed that, unlike some other cytotoxins of the RTX family, K. kingae RtxA does not bind target cells via the ß2 integrins. Our results, hence, show that RtxA binds cell surface oligosaccharides present on all mammalian cells but not the leukocyte-restricted ß2 integrins. This explains the previously observed interaction of the toxin with a broad range of cell types of various mammalian species and reveals that RtxA belongs to the group of broadly cytolytic RTX hemolysins.


Assuntos
Toxinas Bacterianas/metabolismo , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Kingella kingae/metabolismo , Oligossacarídeos/metabolismo , Animais , Morte Celular , Linhagem Celular , Feminino , Glicosídeo Hidrolases/metabolismo , Glicosilação , Humanos , Macrófagos/metabolismo , Camundongos , Oligossacarídeos/química , Ligação Proteica
13.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203545

RESUMO

The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.


Assuntos
Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Brônquios/microbiologia , Células Epiteliais/microbiologia , Coqueluche/microbiologia , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/genética , Brônquios/citologia , Brônquios/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Mucina-5AC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Coqueluche/genética , Coqueluche/metabolismo
14.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304852

RESUMO

Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis. IL-17 is mainly produced by activated Th-17 helper cells upon stimulation by IL-23 and, via binding to its receptors, mediates IL-17-driven cell signaling in keratinocytes. Hyper-proliferation of keratinocytes belongs to major clinical manifestations in psoriasis. To modulate IL-17-mediated inflammatory cascade, we generated a unique collection of IL-17RA-targeting protein binders that prevent from binding of human IL-17A cytokine to its cell-surface receptor. To this goal, we used a highly complex combinatorial library derived from scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived high-affinity ligands of human IL-17RA, called ARS binders. From 67 analyzed ABD variants, 7 different sequence families were identified. Representatives of these groups competed with human IL-17A for binding to recombinant IL-17RA receptor as well as to IL-17RA-Immunoglobulin G chimera, as tested in enzyme-linked immunosorbent assay (ELISA). Five ARS variants bound to IL-17RA-expressing THP-1 cells and blocked binding of human IL-17 cytokine to the cell surface, as tested by flow cytometry. Three variants exhibited high-affinity binding with a nanomolar Kd value to human keratinocyte HaCaT cells, as measured using Ligand Tracer Green Line. Upon IL-17-stimulated activation, ARS variants inhibited secretion of Gro-α (CXCL1) by normal human skin fibroblasts in vitro. Thus, we identified a novel class of inhibitory ligands that might serve as immunosuppressive IL-17RA-targeted non-IgG protein antagonists.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptores de Interleucina-17/química , Proteínas Recombinantes/metabolismo
15.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396322

RESUMO

The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMß2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b- cells. The nonhemolytic AC+ Hly- bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly- mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b- cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/patogenicidade , AMP Cíclico/metabolismo , Proteínas Hemolisinas/metabolismo , Antígeno de Macrófago 1/metabolismo , Coqueluche/microbiologia , Animais , Antígeno CD11b/metabolismo , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Feminino , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagócitos/imunologia , Linfócitos T/imunologia , Virulência
16.
Cell Microbiol ; 18(3): 384-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26334669

RESUMO

The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in virulence of Bordetella pertussis. CyaA penetrates myeloid cells expressing the complement receptor 3 (αM ß2 integrin CD11b/CD18) and subverts bactericidal capacities of neutrophils and macrophages by catalysing unregulated conversion of cytosolic ATP to the key signalling molecule adenosine 3',5'-cyclic monophosphate (cAMP). We show that the signalling of CyaA-produced cAMP hijacks, by an as yet unknown mechanism, the activity of the tyrosine phosphatase SHP-1 and activates the pro-apoptotic BimEL-Bax cascade. Mitochondrial hyperpolarization occurred in human THP-1 macrophages within 10 min of exposure to low CyaA concentrations (e.g. 20 ng ml(-1) ) and was accompanied by accumulation of BimEL and association of the pro-apoptotic factor Bax with mitochondria. BimEL accumulation required cAMP/protein kinase A signalling, depended on SHP-1 activity and was selectively inhibited upon small interfering RNA knockdown of SHP-1 but not of the SHP-2 phosphatase. Moreover, signalling of CyaA-produced cAMP inhibited the AKT/protein kinase B pro-survival cascade, enhancing activity of the FoxO3a transcription factor and inducing Bim transcription. Synergy of FoxO3a activation with SHP-1 hijacking thus enables the toxin to rapidly trigger a persistent accumulation of BimEL, thereby activating the pro-apoptotic programme of macrophages and subverting the innate immunity of the host.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Fagócitos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Bordetella pertussis/patogenicidade , AMP Cíclico/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Fagócitos/microbiologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo
17.
Int J Med Microbiol ; 306(1): 38-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26699834

RESUMO

Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of FHA, placing specific emphasis on the role of the residual endotoxin contamination of FHA preparations. We show that endotoxin depletion did not affect the capacity of FHA to bind primary human monocyte-derived dendritic cells, while it abrogated the capacity of FHA to elicit TNF-α and IL-10 secretion and strongly reduced its capacity to trigger IL-6 production. The levels of cytokines induced by the different FHA preparations correlated with their residual contents of B. pertussis endotoxin. Moreover, FHA failed to trigger cytokine secretion in the presence of antibodies that block TLR2 and/or TLR4 signaling. The TLR2 signaling capacity appeared to be linked to the presence of endotoxin-associated components in FHA preparations and not to the FHA protein itself. These results show that the endotoxin-depleted FHA protein does not induce cytokine release from human dendritic cells.


Assuntos
Adesinas Bacterianas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Fatores de Virulência de Bordetella/imunologia , Células Cultivadas , Humanos
18.
J Immunol ; 193(4): 1787-98, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024388

RESUMO

Deciphering the mechanisms that allow the induction of strong immune responses is crucial to developing efficient vaccines against infectious diseases and cancer. Based on the discovery that the adenylate cyclase from Bordetella pertussis binds to the CD11b/CD18 integrin, we developed a highly efficient detoxified adenylate cyclase-based vector (CyaA) capable of delivering a large variety of Ags to the APC. This vector allows the induction of protective and therapeutic immunity against viral and tumoral challenges as well as against transplanted tumors in the absence of any added adjuvant. Two therapeutic vaccine candidates against human papilloma viruses and melanoma have been developed recently, based on the CyaA vector, and are currently in clinical trials. We took advantage of one of these highly purified vaccines, produced under good manufacturing practice-like conditions, to decipher the mechanisms by which CyaA induces immune responses. In this study, we demonstrate that CyaA binds both human and mouse CD11b(+) dendritic cells (DCs) and induces their maturation, as shown by the upregulation of costimulatory and MHC molecules and the production of proinflammatory cytokines. Importantly, we show that DCs sense CyaA through the TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß pathway, independent of the presence of LPS. These findings show that CyaA possesses the intrinsic ability to not only target DCs but also to activate them, leading to the induction of strong immune responses. Overall, this study demonstrates that Ag delivery to CD11b(+) DCs in association with TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß activation is an efficient strategy to promote strong specific CD8(+) T cell responses.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Toxina Adenilato Ciclase/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Bordetella pertussis/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/citologia , Feminino , Interferon beta/imunologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Tirosina/genética
20.
J Biol Chem ; 288(31): 22333-45, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782691

RESUMO

Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Éxons , Cromatografia em Gel , Dicroísmo Circular , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA