Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 301-306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938707

RESUMO

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

2.
J Am Chem Soc ; 138(43): 14458-14468, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27763764

RESUMO

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi2Te3) that violates phase equilibrium, namely, phase-pure n-type K0.06Bi2Te3.18. Incorporated potassium and tellurium in Bi2Te3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 µW cm-1 K-2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

3.
Adv Mater ; 36(7): e2309518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014492

RESUMO

Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films. The fabricated hydrophobic sharkskin, with geometric symmetry breaking, achieves anisotropic drag reduction in frontal and backward flow directions against the riblet-textured microdenticles. For mechanical integrity, hard-on-soft multilayered mechanical properties are realized by coating the polymeric sharkskin with thin layers of zinc oxide and platinum, which have higher hardness and recovery behaviors than the polymer. This multilayered hard-on-soft sharkskin exhibits friction anisotropy, mechanical robustness, and structural recovery. Furthermore, coating the MXene nanosheets provides the fabricated sharkskin with a low electrical resistance of ≈5.3 Ω, which leads to high Joule heating (≈229.9 °C at 2.75 V). The proposed magnetomechanical actuation-assisted microfabrication strategy is expected to facilitate the development of devices requiring multifunctional microtextures.

4.
iScience ; 26(4): 106494, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091247

RESUMO

A thermoelectric device is a heat engine that directly converts heat into electricity. Many materials with a high figure of merit Z T have been discovered in the anticipation of a high thermoelectric efficiency. However, there has been a lack of investigations on efficiency-based material evaluation, and little is known about the achievable limit of thermoelectric efficiency. Here, we report the highest thermoelectric efficiency using 12,645 published materials. The 97,841,810 thermoelectric efficiencies are calculated using 808,610 device configurations under various heat-source temperatures ( T h ) when the cold-side temperature is 300 K, solving one-dimensional thermoelectric integral equations with temperature-dependent thermoelectric properties. For infinite-cascade devices, a thermoelectric efficiency larger than 33% (≈⅓) is achievable when T h exceeds 1400 K. For single-stage devices, the best efficiency of 17.1% (≈1/6) is possible when T h is 860 K. Leg segmentation can overcome this limit, delivering a very high efficiency of 24% (≈1/4) when T h is 1100 K.

5.
Materials (Basel) ; 15(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207814

RESUMO

Previous calculations have demonstrated that Te vacancies are energetically the major defects in PbTe. However, the Pb interstitials are also important because experiments have shown that the volume of Pb-rich PbTe increases at a higher Pb content. In this study, density functional theory calculations were used to investigate the defect properties of low-symmetry Pb interstitials in PbTe. By breaking the higher symmetry imposed on the on-centered interstitial defects, the lowest ground state of Pb interstitial defects is off-centered along the [1¯1¯1¯] direction. Because of the four multi-stable structures with low defect-formation energies, the defect density of Pb interstitials is expected to be approximately six times higher than previous predictions for PbTe synthesized at 900 K. In contrast to the on-centered Pb interstitials, the off-centered Pb interstitials in PbTe can exhibit long-range lattice relaxation in the [111] direction beyond a distance of 1 nm, indicating the potential formation of weak local dipoles. This result provides an alternative explanation for the emphanitic anharmonicity of PbTe in the high-temperature regime.

6.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268858

RESUMO

The status of metrology for the characterization of thermoelectric generator modules (TEM) is investigated in this work by an international round robin (RR) test including twelve laboratories from nine countries on three continents. Measurements have been performed with three samples of a Bi2Te3-based commercial TEM type, which has prevailed over three competing types during previous tests on the short- and long-term stability. A comparison of temperature-dependent results is provided up to 200 °C hot side temperature for the maximum power output Pmax, the incident heat flow Q˙In (at maximum efficiency conditions), and the maximum efficiency ηmax. Data evaluation from all RR participants reveals maximum standard deviations for these measurands of 27.2% (Pmax), 59.2% (Q˙In), and 25.9% (ηmax). A comparison between RR data sets and reference data from manufacturer specifications shows high deviations of up to 46%, too. These deviations reflect the absence of measurement guidelines and reference samples and confirm the need for improvements in the standardization of TEM metrology. Accordingly, the results of the RR are presented against the background of our own investigations on the uncertainty budgets for the determination of the abovementioned TEM properties using inhouse-developed characterization facilities, which comprise reference and absolute measurement techniques for the determination of heat flow.

7.
Adv Mater ; 34(10): e2109144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936713

RESUMO

Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, it is reported that the broken inversion symmetry of multiferroicity can act as an external knob enabling magnetic excitons in the van der Waals antiferromagnet NiI2 . It is further discovered that this magnetic exciton arises from a transition between Zhang-Rice-triplet and Zhang-Rice-singlet fundamentally quantum-entangled states. This quantum entanglement produces an ultrasharp optical exciton peak at 1.384 eV with a 5 meV linewidth. The work demonstrates that NiI2 is 2D magnetically ordered with an intrinsically quantum-entangled ground state.

8.
iScience ; 24(9): 102934, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34466781

RESUMO

For over half a century, the development of thermoelectric materials has based on the dimensionless figure of merit z T , assuming that the efficiency is mainly determined by this single parameter. Here, we show that the thermoelectric conversion efficiency is determined by three independent parameters, Z gen , τ, and ß, which we call the three thermoelectric degrees of freedom (DoFs). Z gen is the well-defined mean of the traditional z T under nonzero temperature differences. The two additional parameters τ and ß are gradients of material properties and crucial to evaluating the heat current altered by nonzero Thomson heat and asymmetric Joule heat escape. Each parameter is a figure of merit. Therefore, increasing one of the three DoFs leads to higher efficiency. Our finding explains why the single-parameter theory is inaccurate. Further, it suggests an alternative direction in material discovery and device design in thermoelectrics, such as high τ and ß, beyond z T .

9.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832174

RESUMO

Thermoelectric generators are a reliable and environmentally friendly source of electrical energy. A crucial step for their development is the maximization of their efficiency. The efficiency of a TEG is inversely related to its electrical contact resistance, which it is therefore essential to minimize. In this paper, we investigate the contacting of an Al electrode on Mg2(Si,Sn) thermoelectric material and find that samples can show highly asymmetric electrical contact resistivities on both sides of a leg (e.g., 10 µΩ·cm2 and 200 µΩ·cm2). Differential contacting experiments allow one to identify the oxide layer on the Al foil as well as the dicing of the pellets into legs are identified as the main origins of this behavior. In order to avoid any oxidation of the foil, a thin layer of Zn is sputtered after etching the Al surface; this method proves itself effective in keeping the contact resistivities of both interfaces equally low (<10 µΩ·cm2) after dicing. A slight gradient is observed in the n-type leg's Seebeck coefficient after the contacting with the Zn-coated electrode and the role of Zn in this change is confirmed by comparing the experimental results to hybrid-density functional calculations of Zn point defects.

10.
Adv Sci (Weinh) ; 8(20): e2100895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390224

RESUMO

Thermoelectric properties are frequently manipulated by introducing point defects into a matrix. However, these properties often change in unfavorable directions owing to the spontaneous formation of vacancies at high temperatures. Although it is crucial to maintain high thermoelectric performance over a broad temperature range, the suppression of vacancies is challenging since their formation is thermodynamically preferred. In this study, using PbTe as a model system, it is demonstrated that a high thermoelectric dimensionless figure of merit, zT ≈ 2.1 at 723 K, can be achieved by suppressing the vacancy formation via dopant balancing. Hole-killer Te vacancies are suppressed by Ag doping because of the increased electron chemical potential. As a result, the re-dissolution of Na2 Te above 623 K can significantly increase the hole concentration and suppress the drop in the power factor. Furthermore, point defect scattering in material systems significantly reduces lattice thermal conductivity. The synergy between defect and carrier engineering offers a pathway for achieving a high thermoelectric performance by alleviating the power factor drop and can be utilized to enhance thermoelectric properties of thermoelectric materials.

11.
Water Res ; 170: 115310, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770648

RESUMO

Electrodeionization (EDI) is membrane-based desalination utilizing ion exchange membranes and ion exchange resins. By combining Electrodialysis and Ion exchanger, EDI can produce ultrapure water in a continuous-flow manner. Although its theoretical mechanisms are well documented, there is no experimental platform that can provide microscopic details inside of the system. In this paper, we present microscale EDI that can visualize in situ ion concentration, pH, and fluid flows. The platform was fabricated by filling ion exchange resins as a monolayer in a transparent polydimethylsiloxane channel between cation and anion exchange membranes. According to operating voltages (0-15V), distinct behaviors of ion concentration profile, pH shift, and fluid flows were observed in Ohmic, limiting, and overlimiting regimes. It is noteworthy that overlimiting regimes can be sub-categorized as water-splitting and electroconvection regimes. In the early stage (4-8V), water-splitting is dominant with pH change near the membranes and resins; under a higher voltage (8-15V), electroconvection starts to occur even water-splitting tries to suppress the development of the extended space charge layer and corresponding electroconvective instability. Accelerated ionic migration by electroconvection can improve current efficiency up to 80%. This is a clear departure from overlimiting dynamics in electrodialysis (with electroconvection only), ion exchanger (with no distinct regime), and even from that in previous EDI experiments (with water splitting only).


Assuntos
Membranas Artificiais , Água , Ânions , Cátions , Troca Iônica
12.
Sci Rep ; 10(1): 13456, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778761

RESUMO

The thermoelectric properties (TEPs), consisting of Seebeck coefficient, electrical resistivity and thermal conductivity, are infinite-dimensional vectors because they depend on temperature. Accordingly, a projection of them into a finite-dimensional space is inevitable for use in computers. In this paper, as a dimension reduction method, we validate the use of high-order polynomial interpolation of TEPs at Chebyshev nodes of the second kind. To avoid the numerical instability of high order Lagrange polynomial interpolation, we use the barycentric formula. The numerical tests on 276 sets of published TEPs show at least 8 nodes are recommended to preserve the positivity of electrical resistivity and thermal conductivity. With 11 nodes, the interpolation causes about 2% error in TEPs and only 0.4% error in thermoelectric generator module performance. The robustness of our method against noise in TEPs is also tested; as the relative error caused by the interpolation of TEPs is almost the same as the relative size of noise, the interpolation does not cause unnecessarily high oscillation at unsampled points. The accuracy and robustness of the interpolation indicate digitizing infinite-dimensional univariate material data is practicable with tens or less data points. Furthermore, since a large interpolation error comes from a drastic change of data, the interpolation can be used to detect an anomaly such as a phase transition.

13.
ACS Nano ; 13(4): 3806-3815, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30735348

RESUMO

Considerable efforts have been devoted to enhancing thermoelectric performance, by employing phonon scattering from nanostructural architecture, and material design using phonon-glass and electron-crystal concepts. The nanostructural approach helps to lower thermal conductivity but has limited effect on the power factor. Here, we demonstrate selective charge Anderson localization as a route to maximize the Seebeck coefficient while simultaneously preserving high electrical conductivity and lowering the lattice thermal conductivity. We confirm the viability of interface potential modification in an n-type Bi-doped PbTe/Ag2Te nanocomposite and the resulting enhancement in thermoelectric figure-of-merit ZT. The introduction of random potentials via Ag2Te nanoparticle distribution using extrinsic phase mixing was determined using scanning tunneling spectroscopy measurements. When the Ag2Te undergoes a structural phase transition ( T > 420 K) from monoclinic ß-Ag2Te to cubic α-Ag2Te, the band gap in the α-Ag2Te increases due to the p -d hybridization. This results in a decrease in the potential barrier height, which gives rise to partial delocalization of the electrons, while wave packets of the holes are still in a localized state. Using this strategic approach, we achieved an exceptionally high thermoelectric figure-of-merit in n-type PbTe materials, a ZT greater than 2.0, suitable for waste heat power generation.

14.
Front Chem ; 6: 436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320067

RESUMO

Lead telluride (PbTe) nanofibers were fabricated by galvanic displacement of electrospun cobalt nanofibers where their composition and morphology were altered by adjusting the electrolyte composition and diameter of sacrificial cobalt nanofibers. By employing Co instead of Ni as the sacrificial material, residue-free PbTe nanofibers were synthesized. The Pb content of the PbTe nanofibers was slightly affected by the Pb2+ concentration in the electrolyte, while the average outer diameter increased with Pb2+ concentration. The surface morphology of PbTe nanofibers was strongly dependent on the diameter of sacrificial nanofibers where it altered from smooth to rough surface as the Pb2+ concentration increased. Some of thermoelectric properties [i.e., thermopower (S) and electrical conductivity(σ)] were systematically measured as a function of temperature. Energy barrier height (Eb) was found to be one of the key factors affecting the thermoelectric properties-that is, higher energy barrier heights increased the Seebeck coefficient, but lowered the electrical conductivity.

15.
Nanoscale Res Lett ; 13(1): 200, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980879

RESUMO

ᅟ: We report on the successful preparation of Bi-doped n-type polycrystalline SnSe by hot-press method. We observed anisotropic transport properties due to the (h00) preferred orientation of grains along the pressing direction. The electrical conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 12.85 and 6.46 S cm-1 at 773 K for SnSe:Bi 8% sample, respectively, while thermal conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 0.81 and 0.60 W m-1 K-1 at 773 K for SnSe:Bi 8% sample, respectively. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition, whose transition temperature increases with Bi concentration. Our work addressed a possibility to dope polycrystalline SnSe by a hot-pressing process, which may be applied to module applications. HIGHLIGHTS: 1. We have successfully achieved Bi-doped n-type polycrystalline SnSe by the hot-press method. 2. We observed anisotropic transport properties due to the [h00] preferred orientation of grains along pressing direction. 3. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition.

16.
Sci Rep ; 7(1): 4496, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674398

RESUMO

We report the enhanced thermoelectric properties of Ce-doped AgSbTe2 (AgSb1-xCexTe2) compounds. As the Ce contents increased, the proportion of heterophase Ag2Te in the AgSbTe2 gradually decreased, along with the size of the crystals. The electrical resistivity and Seebeck coefficient were dramatically affected by Ce doping and the lattice thermal conductivity was reduced. The presence of nanostructured Ag2Te heterophases resulted in a greatly enhanced dimensionless figure of merit, ZT of 1.5 at 673 K. These findings highlight the importance of the heterophase and doping control, which determines both electrical and thermal properties.

17.
ACS Appl Mater Interfaces ; 8(11): 7003-12, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26915474

RESUMO

Solid solutions of magnesium silicide and magnesium stannide were recently reported to have high thermoelectric figure-of-merits (ZT) due to remarkably low thermal conductivity, which was conjectured to come from phonon scattering by segregated Mg2Si and Mg2Sn phases without detailed study. However, it is essential to identify the main cause for further improving ZT as well as estimating its upper bound. Here we synthesized Mg2(Si,Sn) with nanoparticles and segregated phases, and theoretically analyzed and estimated the thermal conductivity upon segregated fraction and extraneous nanoparticle addition by fitting experimentally obtained thermal conductivity, electrical conductivity, and thermopower. In opposition to the previous speculation that segregated phases intensify phonon scattering, we found that lattice thermal conductivity was increased by the phase segregation, which is difficult to avoid due to the miscibility gap. We selected extraneous TiO2 nanoparticles dissimilar to the host materials as additives to reduce lattice thermal conductivity. Our experimental results showed the maximum ZT was improved from ∼0.9 without the nanoparticles to ∼1.1 with 2 and 5 vol % TiO2 nanoparticles at 550 °C. According to our theoretical analysis, this ZT increase by the nanoparticle addition mainly comes from suppressed lattice thermal conductivity in addition to lower bipolar thermal conductivity at high temperatures. The upper bound of ZT was predicted to be ∼1.8 for the ideal case of no phase segregation and addition of 5 vol % TiO2 nanoparticles. We believe this study offers a new direction toward improved thermoelectric performance of Mg2(Si,Sn).

18.
Nat Commun ; 7: 13713, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941762

RESUMO

Recently SnSe, a layered chalcogenide material, has attracted a great deal of attention for its excellent p-type thermoelectric property showing a remarkable ZT value of 2.6 at 923 K. For thermoelectric device applications, it is necessary to have n-type materials with comparable ZT value. Here, we report that n-type SnSe single crystals were successfully synthesized by substituting Bi at Sn sites. In addition, it was found that the carrier concentration increases with Bi content, which has a great influence on the thermoelectric properties of n-type SnSe single crystals. Indeed, we achieved the maximum ZT value of 2.2 along b axis at 733 K in the most highly doped n-type SnSe with a carrier density of -2.1 × 1019 cm-3 at 773 K.

19.
Dalton Trans ; 44(7): 3185-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25579326

RESUMO

We investigated the thermoelectric properties of Cl-doped polycrystalline compounds In4Pb0.01Sn0.03Se2.9Clx (x = 0.02, 0.04, and 0.06). X-ray diffraction measurement shows a gradual change in lattice volume for x ≤ 0.04 without any impurity phases indicating a systemic change in Cl doping. The Cl doping in the compounds has the effect of increasing carrier concentration and the effective mass of carriers, resulting in an increase in power factor at a high temperature (∼700 K). Because of the increased electrical conductivity at a high temperature, the dimensionless thermoelectric figure of merit ZT reaches 1.25 at 723 K for the x = 0.04 Cl-doped compound, which is a relatively high value for n-type polycrystalline materials.

20.
Nanoscale ; 7(1): 365, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25424730

RESUMO

Correction for 'Three-dimensional hierarchical Te-Si nanostructures' by Jae-Hong Lim et al., Nanoscale, 2014, 6, 11697-11702.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA