Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 73(3): 448-458, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38123984

RESUMO

OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Bactérias , Anticorpos Antibacterianos , Imunoglobulina G
2.
BMC Microbiol ; 24(1): 222, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918717

RESUMO

BACKGROUND: 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts. METHODS: A pooled microbial consortium was derived from ten healthy donors, inoculated in an in vitro model of the colon, and treated with 5-FU, with or without prebiotic fibre mixtures for 72 h. Four different prebiotic fibre mixtures were tested: M1 containing short-chain galacto-oligosaccharides (sc GOS), long-chain fructo-oligosaccharides (lcFOS), and low viscosity pectin (lvPect), M2 consisting of arabinoxylan, beta-glucan, pectin, and resistant starch, M3 which was a mixture of scGOS and lcFOS, and M4 containing arabinoxylan, beta-glucan, pectin, resistant starch, and inulin. RESULTS: We identified 5-FU-induced changes in gut microbiota composition, but not in microbial diversity. Administration of prebiotic fibre mixtures during 5-FU influenced gut microbiota composition and taxa abundance. Amongst others, prebiotic fibre mixtures successfully stimulated potentially beneficial bacteria (Bifidobacterium, Lactobacillus, Anaerostipes, Weissella, Olsenella, Senegalimassilia) and suppressed the growth of potentially pathogenic bacteria (Klebsiella, Enterobacter) in the presence of 5-FU. The short-chain fatty acid (SCFA) acetate increased slightly during 5-FU, but even more during 5-FU with prebiotic fibre mixtures, while propionate was lower due to 5-FU with or without prebiotic fibre mixtures, compared to control. The SCFA butyrate and valerate did not show differences among all conditions. The branched-chain fatty acids (BCFA) iso-butyrate and iso-valerate were higher in 5-FU, but lower in 5-FU + prebiotics, compared to control. CONCLUSIONS: These data suggest that prebiotic fibre mixtures represent a promising strategy to modulate 5-FU-induced microbial dysbiosis towards a more favourable microbiota, thereby possibly improving 5-FU efficacy and reducing toxicity, which should be evaluated further in clinical studies.


Assuntos
Colo , Fibras na Dieta , Disbiose , Fluoruracila , Microbioma Gastrointestinal , Prebióticos , Fluoruracila/farmacologia , Disbiose/microbiologia , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fibras na Dieta/farmacologia , Colo/microbiologia , Colo/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Masculino , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Feminino , Adulto , Pectinas/farmacologia
3.
Microb Pathog ; 178: 106061, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906154

RESUMO

The rise of antibiotic resistance poses a global problem. To avoid this, alternative therapeutic options should be explored, e.g. lytic bacteriophage therapy. Well-designed and described research on effectivity of oral bacteriophage therapy is lacking, therefore the aim of this study was to determine whether the in vitro model of the colon (TIM-2) could be used to investigate the survival and efficacy of therapeutic bacteriophages. For this, an antibiotic-resistant (CmR) E. coli DH5α(pGK11) was used in combination with a corresponding bacteriophage. For the survival study, the TIM-2 model was inoculated with the microbiota of healthy individuals and a standard feeding (SIEM) was fed over the course of the 72 h experiment. To test the bacteriophage, different interventions were carried out. Survival of bacteriophages and bacteria was followed by plating of the lumen samples at different time points 0, 2, 4, 8, 24, 48, and 72 h. In addition, the stability of the bacterial community was determined with the use of 16S rRNA sequencing. Results showed that the phage titers could be decreased by activity from the commensal microbiota. Levels of the phage host (here E.coli) were decreased in the interventions with the phage shot. Multiple shots did not seem to be more effective than a single shot. At the same time, the bacterial community was not disturbed and remained stable throughout the experiment, which is in stark contrast to treatment with antibiotics. Mechanistic studies such as this one are required to optimize efficacy of phage therapy.


Assuntos
Bacteriófagos , Humanos , Escherichia coli , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Bactérias , Colo
4.
Eur Heart J ; 42(35): 3521-3525, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34338744

RESUMO

Dietary intake has been shown to change the composition of gut microbiota and some changes in microbiota (dysbiosis) have been linked to diabetes, hypertension, and obesity, which are established risk factors for atrial fibrillation (AF). In addition, intestinal dysbiosis generates microbiota-derived bioactive metabolites that might exert proarrhythmic actions. Although emerging preclinical investigations and clinical observational cohort studies suggest a possible role of gut dysbiosis in AF promotion, the exact mechanisms through which dysbiosis contributes to AF remain unclear. This Viewpoint article briefly reviews evidence suggesting that abnormalities in the intestinal microbiota play an important and little-recognized role in the pathophysiology of AF and that an improved understanding of this role may open up new possibilities in the management of AF.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Disbiose , Humanos , Obesidade , Fatores de Risco
5.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628138

RESUMO

Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.


Assuntos
Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada , Obesidade , Estudos Transversais , Dieta , Método Duplo-Cego , Produtos Finais de Glicação Avançada/administração & dosagem , Humanos , Obesidade/dietoterapia , Obesidade/microbiologia , RNA Ribossômico 16S/genética
6.
Gut ; 70(3): 595-605, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051190

RESUMO

The human gut microbiome is a complex ecosystem, densely colonised by thousands of microbial species. It varies among individuals and depends on host genotype and environmental factors, such as diet and antibiotics. In this review, we focus on stability and resilience as essential ecological characteristics of the gut microbiome and its relevance for human health. Microbial diversity, metabolic flexibility, functional redundancy, microbe-microbe and host-microbe interactions seem to be critical for maintaining resilience. The equilibrium of the gut ecosystem can be disrupted by perturbations, such as antibiotic therapy, causing significant decreases in functional richness and microbial diversity as well as impacting metabolic health. As a consequence, unbalanced states or even unhealthy stable states can develop, potentially leading to or supporting diseases. Accordingly, strategies have been developed to manipulate the gut microbiome in order to prevent or revert unhealthy states caused by perturbations, including faecal microbiota transplantation, supplementation with probiotics or non-digestible carbohydrates, and more extensive dietary modifications. Nevertheless, an increasing number of studies has evidenced interindividual variability in extent and direction of response to diet and perturbations, which has been attributed to the unique characteristics of each individual's microbiome. From a clinical, translational perspective, the ability to improve resilience of the gut microbial ecosystem prior to perturbations, or to restore its equilibrium afterwards, would offer significant benefits. To be effective, this therapeutic approach will likely need a personalised or subgroup-based understanding of individual genetics, diet, gut microbiome and other environmental factors that might be involved.


Assuntos
Microbioma Gastrointestinal/fisiologia , Antibacterianos/efeitos adversos , Biodiversidade , Dieta , Disbiose/etiologia , Disbiose/prevenção & controle , Transplante de Microbiota Fecal , Interações entre Hospedeiro e Microrganismos , Humanos , Probióticos/uso terapêutico
7.
J Proteome Res ; 20(11): 5079-5087, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587745

RESUMO

While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.


Assuntos
Metaboloma , Metabolômica , Adulto , Ácidos Graxos Voláteis/análise , Fezes/química , Humanos , Lactente , Recém-Nascido , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
8.
Gastroenterology ; 158(6): 1584-1596, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958431

RESUMO

BACKGROUND & AIMS: Establishment of the gastrointestinal microbiota during infancy affects immune system development and oral tolerance induction. Perturbations in the microbiome during this period can contribute to development of immune-mediated diseases. We monitored microbiota maturation and associations with subsequent development of allergies in infants and children. METHODS: We collected 1453 stool samples, at 5, 13, 21, and 31 weeks postpartum (infants), and once at school age (6-11 years), from 440 children (49.3% girls, 24.8% born by cesarean delivery; all children except for 6 were breastfed for varying durations; median 40 weeks; interquartile range, 30-53 weeks). Microbiota were analyzed by amplicon sequencing. Children were followed through 3 years of age for development of atopic dermatitis; data on allergic sensitization and asthma were collected when children were school age. RESULTS: Diversity of fecal microbiota, assessed by Shannon index, did not differ significantly among children from 5 through 13 weeks after birth, but thereafter gradually increased to 21 and 31 weeks. Most bacteria within the Bacteroidetes and Proteobacteria phyla were already present at 5 weeks after birth, whereas many bacteria of the Firmicutes phylum were acquired at later times in infancy. At school age, many new Actinobacteria, Firmicutes, and Bacteroidetes bacterial taxa emerged. The largest increase in microbial diversity occurred after 31 weeks. Vaginal, compared with cesarean delivery, was most strongly associated with an enrichment of Bacteroides species at 5 weeks through 31 weeks. From 13 weeks onward, diet became the most important determinant of microbiota composition; cessation of breastfeeding, rather than solid food introduction, was associated with changes. For example, Bifidobacteria, staphylococci, and streptococci significantly decreased on cessation of breastfeeding, whereas bacteria within the Lachnospiraceae family (Pseudobutyrivibrio, Lachnobacterium, Roseburia, and Blautia) increased. When we adjusted for confounding factors, we found fecal microbiota composition to be associated with development of atopic dermatitis, allergic sensitization, and asthma. Members of the Lachnospiraceae family, as well as the genera Faecalibacterium and Dialister, were associated with a reduced risk of atopy. CONCLUSIONS: In a longitudinal study of fecal microbiota of children from 5 weeks through 6 to 11 years, we tracked changes in diversity and composition associated with the development of allergies and asthma.


Assuntos
Asma/epidemiologia , Aleitamento Materno/estatística & dados numéricos , Cesárea/estatística & dados numéricos , Desenvolvimento Infantil/fisiologia , Dermatite Atópica/epidemiologia , Microbioma Gastrointestinal/imunologia , Asma/imunologia , Asma/microbiologia , Bactérias/genética , Bactérias/imunologia , Bactérias/isolamento & purificação , Criança , Fatores de Confusão Epidemiológicos , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas/fisiologia , Lactente , Estudos Longitudinais , Masculino , RNA Ribossômico 16S/genética
9.
BMC Infect Dis ; 21(1): 1008, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579656

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship.


Assuntos
Antibacterianos , Saúde Global , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Estudos Longitudinais , Estudantes , beta-Lactamases/genética
10.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450659

RESUMO

Clinical interest in the human intestinal microbiota has increased considerably. However, an overview of clinical studies investigating the link between the human intestinal microbiota and systemic cancer therapy is lacking. This systematic review summarizes all clinical studies describing the association between baseline intestinal microbiota and systemic cancer therapy outcome as well as therapy-related changes in intestinal microbiota composition. A systematic literature search was performed and provided 23 articles. There were strong indications for a close association between the intestinal microbiota and outcome of immunotherapy. Furthermore, the development of chemotherapy-induced infectious complications seemed to be associated with the baseline microbiota profile. Both chemotherapy and immunotherapy induced drastic changes in gut microbiota composition with possible consequences for treatment efficacy. Evidence in the field of hormonal therapy was very limited. Large heterogeneity concerning study design, study population, and methods used for analysis limited comparability and generalization of results. For the future, longitudinal studies investigating the predictive ability of baseline intestinal microbiota concerning treatment outcome and complications as well as the potential use of microbiota-modulating strategies in cancer patients are required. More knowledge in this field is likely to be of clinical benefit since modulation of the microbiota might support cancer therapy in the future.


Assuntos
Microbioma Gastrointestinal , Neoplasias/terapia , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Gerenciamento Clínico , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Humanos , Metagenoma , Metagenômica/métodos , Neoplasias/complicações , Neoplasias/mortalidade , Prognóstico , Resultado do Tratamento
11.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646522

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries, with a continuously rising incidence. Gut-liver communication and microbiota composition have been identified as critical drivers of the NAFLD progression. Hence, it has been shown that microbiota depletion can ameliorate high-fat diet or western-diet induced experimental Non-alcoholic steatohepatitis (NASH). However, its functional implications in the methionine-choline dietary model, remain incompletely understood. Here, we investigated the physiological relevance of gut microbiota in methionine-choline deficient (MCD) diet induced NASH. Experimental liver disease was induced by 8 weeks of MCD feeding in wild-type (WT) mice, either with or without commensal microbiota depletion, by continuous broad-spectrum antibiotic (AB) treatment. MCD diet induced steatohepatitis was accompanied by a reduced gut microbiota diversity, indicating intestinal dysbiosis. MCD treatment prompted macroscopic shortening of the intestine, as well as intestinal villi in histology. However, gut microbiota composition of MCD-treated mice, neither resembled human NASH, nor did it augment the intestinal barrier integrity or intestinal inflammation. In the MCD model, AB treatment resulted in increased steatohepatitis activity, compared to microbiota proficient control mice. This phenotype was driven by pronounced neutrophil infiltration, while AB treatment only slightly increased monocyte-derived macrophages (MoMF) abundance. Our data demonstrated the differential role of gut microbiota, during steatohepatitis development. In the context of MCD induced steatohepatitis, commensal microbiota was found to be hepatoprotective.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Colina/efeitos adversos , Colina/metabolismo , Deficiência de Colina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Variação Genética/genética , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Metionina/efeitos adversos , Metionina/deficiência , Metionina/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
13.
Am J Epidemiol ; 185(6): 465-473, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28399567

RESUMO

Evidence on the association between mode of delivery and asthma at school age is inconclusive. We assessed the associations between specific modes of delivery and asthma in children from 9 European birth cohorts that enrolled participants between 1996 and 2006. Cohort-specific crude and adjusted risk ratios for asthma at ages 5-9 years were calculated using Poisson regression models and pooled. A sensitivity analysis was carried out in children born at term to reduce confounding due to perinatal factors. The study included 67,613 participants. Cohort-specific rates of cesarean delivery varied from 9.4% to 37.5%. Cesarean delivery, as opposed to vaginal delivery, was associated with an increased risk of asthma (adjusted risk ratio (aRR) = 1.22, 95% confidence interval (CI): 1.02, 1.46). Compared with spontaneous vaginal delivery, the adjusted risk ratio was 1.33 (95% CI: 1.02, 1.75) for elective cesarean delivery, 1.07 (95% CI: 0.94, 1.22) for emergency cesarean delivery, and 0.97 (95% CI: 0.84, 1.12) for operative vaginal delivery. In children born at term, the associations were strengthened only for elective cesarean delivery (aRR = 1.49, 95% CI: 1.13, 1.97). The large sample size allowed analysis of the associations between specific modes of delivery and asthma at school age. The increased risk of asthma associated with elective cesarean delivery, especially among children born at term, is relevant in counteracting the increasing use of this procedure, which is often performed without a clear medical indication.


Assuntos
Asma/etiologia , Cesárea/efeitos adversos , Parto Obstétrico/métodos , Asma/epidemiologia , Cesárea/estatística & dados numéricos , Criança , Pré-Escolar , Estudos de Coortes , Parto Obstétrico/estatística & dados numéricos , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Europa (Continente)/epidemiologia , Humanos , Distribuição de Poisson , Prevalência , Estudos Prospectivos , Nascimento a Termo
14.
FASEB J ; 30(4): 1512-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26655704

RESUMO

Numerous diseases linked to microbial imbalance can be traced back to childhood, illustrating the impact of the juvenile microbiota development from infancy toward adulthood. However, knowledge on this subject is currently very limited. The primary aim of this study was to characterize composition and short- and long-term stability of the intestinal microbiota in healthy children. Between November 2011 and June 2014, 61 children 2 to 18 yr of age from different areas in The Netherlands were included and instructed to collect fecal samples weekly, for 6 wk, and a follow-up sample after 18 mo. The intergenic spacer profiling technique (IS-pro) was used to analyze all available fecal samples. Microbial diversity was calculated by the Shannon diversity index and individual compositional stability by comparing all collection time points. Microbial stability varied per phylum (P< 0.0005), declined rapidly in a short time period, and subsequently stabilized on the long run with very gradual variation, leading to an overall compositional stability of 70% on average over a period of 18 mo. Higher species diversity was correlated to a higher overall compositional stability (P< 0.001). We observed an age-independent bacterial shared core consisting of a limited number of species. In conclusion, in this study, we showed that microbial composition stability in children varied per phylum, at both short-term and long-term intervals. Healthy children seem to share a microbiome core consisting of a limited number of species.-De Meij, T. G. J., Budding, A. E., de Groot, E. F. J., Jansen, F. M., Kneepkens, C. M. F., Benninga, M. A., Penders, J., van Bodegraven, A. A., Savelkoul, P. H. M. Composition and stability of intestinal microbiota of healthy children within a Dutch population.


Assuntos
Bactérias/genética , DNA Espaçador Ribossômico/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adolescente , Bactérias/classificação , Bactérias/isolamento & purificação , Criança , Pré-Escolar , Estudos Transversais , DNA Espaçador Ribossômico/química , Feminino , Variação Genética , Humanos , Masculino , Países Baixos , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA , Especificidade da Espécie
15.
J Allergy Clin Immunol ; 137(4): 1026-1035, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26548843

RESUMO

BACKGROUND: Children born preterm or with a small size for gestational age are at increased risk for childhood asthma. OBJECTIVE: We sought to assess the hypothesis that these associations are explained by reduced airway patency. METHODS: We used individual participant data of 24,938 children from 24 birth cohorts to examine and meta-analyze the associations of gestational age, size for gestational age, and infant weight gain with childhood lung function and asthma (age range, 3.9-19.1 years). Second, we explored whether these lung function outcomes mediated the associations of early growth characteristics with childhood asthma. RESULTS: Children born with a younger gestational age had a lower FEV1, FEV1/forced vital capacity (FVC) ratio, and forced expiratory volume after exhaling 75% of vital capacity (FEF75), whereas those born with a smaller size for gestational age at birth had a lower FEV1 but higher FEV1/FVC ratio (P < .05). Greater infant weight gain was associated with higher FEV1 but lower FEV1/FVC ratio and FEF75 in childhood (P < .05). All associations were present across the full range and independent of other early-life growth characteristics. Preterm birth, low birth weight, and greater infant weight gain were associated with an increased risk of childhood asthma (pooled odds ratio, 1.34 [95% CI, 1.15-1.57], 1.32 [95% CI, 1.07-1.62], and 1.27 [95% CI, 1.21-1.34], respectively). Mediation analyses suggested that FEV1, FEV1/FVC ratio, and FEF75 might explain 7% (95% CI, 2% to 10%) to 45% (95% CI, 15% to 81%) of the associations between early growth characteristics and asthma. CONCLUSIONS: Younger gestational age, smaller size for gestational age, and greater infant weight gain were across the full ranges associated with childhood lung function. These associations explain the risk of childhood asthma to a substantial extent.


Assuntos
Asma/etiologia , Desenvolvimento Infantil/fisiologia , Doenças do Prematuro/etiologia , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Pulmão/fisiopatologia , Adolescente , Asma/fisiopatologia , Criança , Pré-Escolar , Volume Expiratório Forçado , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Doenças do Prematuro/fisiopatologia , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Modelos Estatísticos , Fatores de Risco , Capacidade Vital , Aumento de Peso/fisiologia
16.
J Antimicrob Chemother ; 71(12): 3416-3419, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27559117

RESUMO

BACKGROUND: Recently, the first plasmid-mediated colistin-resistance gene, mcr-1, was reported. Colistin is increasingly used as an antibiotic of last resort for the treatment of infections caused by carbapenem-resistant bacteria, which have been rapidly disseminating worldwide in recent years. OBJECTIVES: The reported carriage rate of mcr-1 in humans remains sporadic thus far, except for those reported in Chinese populations. We aimed to determine its presence in the faecal metagenomes of healthy Dutch travellers between 2010 and 2012. METHODS: Faecal metagenomic DNA of pre- and post-travel samples from 122 healthy Dutch long-distance travellers was screened for the presence of mcr-1 using a TaqMan quantitative PCR assay, which was designed in this study. All positive samples were confirmed by sequencing of the amplicons. RESULTS: The mcr-1 gene was detected in 6 (4.9%, 95% CI = 2.1%-10.5%) of 122 healthy Dutch long-distance travellers after they had visited destinations in South(-east) Asia or southern Africa between 2011 and 2012. One of these participants was already found to be positive before travel. CONCLUSIONS: Our study highlights the potential of PCR-based targeted metagenomics as an unbiased and sensitive method to screen for the carriage of the mcr-1 gene and suggests that mcr-1 is widespread in various parts of the world. The observation that one participant was found to be positive before travel suggests that mcr-1 may already have disseminated to the microbiomes of Dutch residents at a low prevalence, warranting a more extensive investigation of its prevalence in the general population and possible sources.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Fezes/microbiologia , Genes Bacterianos , Metagenômica , Viagem , Adulto , África Austral , Idoso , Sudeste Asiático , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Adulto Jovem
17.
J Pediatr ; 176: 105-113.e2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402330

RESUMO

OBJECTIVE: To examine the timing, frequency, and type of antibiotic exposure during the first 10 years of life in association with (over)weight across this period in a cohort of 979 children. STUDY DESIGN: Within the Child, Parents and Health: Lifestyle and Genetic Constitution Birth Cohort Study, antibiotic exposure record was obtained from general practitioners. Anthropometric outcomes (age- and sex-standardized body mass index, weight and height z-scores, and overweight) were measured repeatedly at 7 time points during the first 10 years of life. Generalized estimating equations method was used for statistical analysis. RESULTS: After adjusting for confounding factors, children exposed to one course of antibiotics compared with none in the first 6 months of life had increased weight- (adjusted generalized estimating equations estimates [adjß] 0.24; 95% CI 0.03-0.44) and height (adjß 0.23; 95% CI 0.0002-0.46) z-scores; exposure to ≥2 courses during the second year of life was associated with both increased weight (adjß 0.34; 95% CI 0.07-0.60), and height z-scores (adjß 0.29; 95% CI -0.003 to 0.59). Exposure later in life was not associated with anthropometric outcomes. Associations with weight z-scores were mainly driven by exposure to broad- (≥2 courses: adjß 0.11; 95% CI 0.003-0.22) and narrow-spectrum ß-lactams (1 course: adjß 0.18; 95% CI 0.005-0.35) during the follow-up period. Specific antibiotic used was not associated with body mass index z-scores and overweight. CONCLUSIONS: Repeated exposure to antibiotics early in life, especially ß-lactam agents, is associated with increased weight and height. If causality of obesity can be established in future studies, this further highlights the need for restrictive antibiotic use and avoidance of prescriptions when there is minimal clinical benefit.


Assuntos
Antibacterianos/efeitos adversos , Estatura/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Fatores Etários , Antibacterianos/farmacologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Inquéritos e Questionários
18.
Hepatology ; 62(5): 1405-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26178698

RESUMO

UNLABELLED: Nonalcoholic fatty liver disease is seen as the hepatic manifestation of the metabolic syndrome and represents the most common liver disease in Western societies. The G protein-coupled chemokine receptor CX3CR1 plays a central role in several metabolic syndrome-related disease manifestations and is involved in maintaining intestinal homeostasis. Because diet-induced intestinal dysbiosis is a driver for nonalcoholic fatty liver disease, we hypothesized that CX3CR1 may influence the development of steatohepatitis. In two independent models of diet-induced steatohepatitis (high-fat diet and methionine/choline-deficient diet), CX3CR1 protected mice from excessive hepatic steatosis and inflammation, as well as systemic glucose intolerance. Lack of Cx3cr1 expression was associated with significantly altered intestinal microbiota composition, which was linked to an impaired intestinal barrier. Concomitantly, endotoxin levels in portal serum and inflammatory macrophages in liver were increased in Cx3cr1-/- mice, indicating an increased inflammatory response. Depletion of intestinal microbiota by administration of broad-spectrum antibiotics suppressed the number of infiltrating macrophages and promoted macrophage polarization in liver. Consequently, antibiotic-treated mice demonstrated a marked improvement of steatohepatitis. CONCLUSION: Microbiota-mediated activation of the innate immune responses through CX3CR1 is crucial for controlling steatohepatitis progression, which recognizes CX3CR1 as an essential gatekeeper in this scenario.


Assuntos
Homeostase , Mucosa Intestinal/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptores de Quimiocinas/fisiologia , Animais , Antibacterianos/farmacologia , Translocação Bacteriana , Glicemia/análise , Receptor 1 de Quimiocina CX3C , Imunidade Inata , Intestinos/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Gut ; 64(10): 1546-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25253126

RESUMO

OBJECTIVE: Crohn's disease (CD) is caused by a complex interplay among genetic, microbial and environmental factors. ATG16L1 is an important genetic factor involved in innate immunity, including autophagy and phagocytosis of microbial components from the gut. We investigated the effect of inflammation on the composition of microbiota in the ileal mucosa of CD patients in relation to the ATG16L1 risk status. DESIGN: Biopsies (n=35) were obtained from inflamed and non-inflamed regions of the terminal ileum of 11 CD patients homozygous for the ATG16L1 risk allele (ATG16L1-T300A) and 9 CD patients homozygous for the ATG16L1 protective allele (ATG16L1-T300). Biopsy DNA was extracted and the bacterial composition analysed by pyrosequencing. Intracellular survival rates of adherent-invasive Escherichia coli (AIEC) were analysed by determining colony forming units after exposure to monocytes isolated from healthy volunteers homozygous for the ATG16L1 risk or protective allele. RESULTS: Inflamed ileal tissue from patients homozygous for the ATG16L1 risk allele contained increased numbers of Fusobacteriaceae, whereas inflamed ileal tissue of patients homozygous for the ATG16L1 protective allele showed decreased numbers of Bacteroidaceae and Enterobacteriaceae and increased Lachnospiraceae. The ATG16L1 allele did not affect the bacterial composition in the non-inflamed ileal tissue. Monocytes homozygous for the ATG16L1 risk allele showed impaired killing of AIEC under inflammatory conditions compared with those homozygous for the ATG16L1 protective allele. CONCLUSIONS: CD patients homozygous for the ATG16L1-T300A risk allele show impaired clearance of pathosymbionts in ileal inflammation indicating that ATG16L1 is essential for effective elimination of pathosymbionts upon inflammation.


Assuntos
Proteínas de Transporte/genética , Doença de Crohn/genética , DNA/genética , Íleo/patologia , Polimorfismo de Nucleotídeo Único , Alelos , Autofagia/genética , Proteínas Relacionadas à Autofagia , Biópsia , Proteínas de Transporte/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Feminino , Homozigoto , Humanos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
20.
Birth Defects Res C Embryo Today ; 105(4): 240-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26607554

RESUMO

The human gut microbiota is a complex and dynamic ecosystem, which naturally lives in a symbiotic relationship with the host. Perturbations of the microbial composition (dysbiosis) and reduced diversity may promote disease susceptibility and recurrence. In contrast to the mature intestinal microbiota of healthy adults, which appears relatively stable over time, the infant's microbiome only establishes and matures during the first years of life. In this respect, early childhood seems to represent a crucial age-window in disease prevention, since microbial diversification and maturation of the microbiome primarily occurs during this period of life. A better understanding of ecological processes and pioneer consortia in microbial development is crucial, in order to support the development of a beneficial microbiota. Various deterministic and stochastic aspects seem to shape the microbiome in early life, including maternal, environmental, and host factors. Here, we review the current understanding of the origin of pioneer bacteria and the evolutionary factors that influence the development of the gut microbiota in infants. In addition, future perspectives, including manipulating and promoting the succession of initial bacteria during infancy, will be highlighted.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Adulto , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA