Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498560

RESUMO

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
2.
J Proteome Res ; 23(4): 1458-1470, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38483275

RESUMO

Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Polissacarídeos/química
3.
Histochem Cell Biol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849589

RESUMO

In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.

4.
PLoS Pathog ; 18(4): e1010167, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482787

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.


Assuntos
Quitinases , Salmonella enterica , Animais , Quitina , Quitinases/genética , Quitinases/metabolismo , Mamíferos , Camundongos , Salmonella enterica/metabolismo , Salmonella typhimurium , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Mass Spectrom Rev ; 42(2): 577-616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34159615

RESUMO

Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.


Assuntos
Glicômica , Software , Animais , Humanos , Glicômica/métodos , Espectrometria de Massas , Polissacarídeos/análise , Glicopeptídeos/análise , Mamíferos
6.
J Integr Plant Biol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578160

RESUMO

Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.

7.
Anal Chem ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625729

RESUMO

Automation and efficiency requirements of environmental monitoring are the pursuit of spontaneous sampling and ultrasensitivity for current sensory systems or detection apparatuses. In this work, inspired by cactus hierarchical structures, we develop a cactus-inspired photonic crystal chip to integrate spontaneous droplet sampling and fluorescence enhancement for sensitive multi-analyte detection. A conical hydrophilic pattern on hydrophobic surfaces can give rise to unidirectional Laplace pressure, which drives droplet transport to the assigned photonic crystal site. The nanostructure of photonic crystals has bigger capillarity to drive the droplet wetting uniformly into the photonic crystal matrix while performing prominent fluorescence enhancement by their photonic bandgap. A low to attomolar (2.24 × 10-19 M) fluorescence limit of detection (LOD) sensitivity can be achieved by the synergy of spontaneous droplet sampling and fluorescence enhancement. Focused on eutrophic water problems and algae pollution monitoring, a femtomolar (1.83 × 10-15 M) LOD and identification of various microcystins in urban environmental water can be achieved. The suitable integration of the unidirectional droplet transport by Laplace pressure and fluorescence enhancement by photonic crystals can achieve the spontaneous sampling and signal enhancement for ultratrace detections and sample survey of environmental monitoring and disease diagnosis.

8.
Anal Chem ; 95(4): 2406-2412, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36669829

RESUMO

Hydrogen sulfide (H2S), as the third gas transporter in biological systems, plays a key role in the regulation of biological cells. Real-time detection of local H2S concentration in vivo is an important and challenging task. Herein, we explored a novel and facile strategy to develop a flexible and transparent H2S sensor based on gold nanowire (AuNW) and carbon nanotube (CNT) films embedded in poly(dimethylsiloxane) (PDMS) (AuNWs/CNTs/PDMS). Taking the advantage of the sandwich-like nanostructured network of AuNWs/CNTs, the prepared electrochemical sensing platform exhibited desirable electrocatalytic activity toward H2S oxidation with a wide linear range (5 nM to 24.9 µM) and a low dete ction limit (3 nM). Furthermore, thanks to the good biocompatibility and flexibility of the sensor, HeLa cells can be cultured directly on the electrode, allowing real-time monitoring of H2S released from cells under a stretched state. This work provides a versatile strategy for the construction of stretchable electrochemical sensors, which has potential applications in the study of H2S-related signal mechanotransduction and pathological processes.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Nanofios , Humanos , Células HeLa , Ouro , Mecanotransdução Celular , Técnicas Eletroquímicas
9.
Anal Chem ; 95(46): 16885-16891, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937709

RESUMO

For the study of cell biology, real-time information on cell physiological processes will be more accurate and closer to the in vivo condition in a three-dimensional (3D) culture system. Although most reported 3D cell culture scaffolds can better mimic the in vivo dynamic microenvironment, the real-time analysis technique is deficient or lacking. Herein, a stretchable and conductive 3D scaffold is developed to construct an electrochemical biosensor for real-time monitoring of cell release in 3D culture under stimulation of drug stimulant and mechanical force. In our design, the polyurethane sponge (PU) dipped with conductive carbon ink (CC/PU) was used as a conductive scaffold, and gold nanoparticles (nano-Au) were electrodeposited on the CC/PU (nano-Au CC/PU) to improve the electrochemical sensing performance. The prepared nano-Au CC/PU scaffold exhibits a good electrocatalytic ability to H2O2 with a linear range from 20 nM to 43 µM. Due to the great biocompatibility, HeLa cells can be cultured directly on the nano-Au CC/PU and the in situ and real-time tracking of H2O2 secretion from cells was achieved. The results demonstrate that both the drug stimulant and mechanical force can rapidly activate the release of reactive oxygen species. This study indicates that the stretchable 3D sensing scaffold has good potential for cell biology research in an in vivo-like microenvironment and can be extensively used in the fields of tissue engineering, drug screening, and pathological research.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Células HeLa , Ouro , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos
10.
Anal Chem ; 95(44): 16059-16069, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37843510

RESUMO

The complexity and heterogeneity of protein glycosylation present an analytical challenge to the studies of characterization and quantitation. Various LC-MS-based quantitation strategies have emerged in recent decades. Metabolic stable isotope labeling has been developed to enhance the accurate LC/MS-based quantitation between different cell lines. Stable isotope labeling by amino acids in a cell culture (SILAC) is the most widely used metabolic labeling method in proteomic analysis. However, it can only label the peptide backbone and is thus limited in glycomic studies. Here, we present a metabolic isotope labeling strategy, named GlyProSILC (Glycan Protein Stable Isotope Labeling in Cell Culture), that can label both the glycan motif and peptide backbone from the same batch of cells. It was performed by feeding cells with a heavy medium containing amide-15N-glutamine, 13C6-arginine (Arg6), and 13C6-15N2-lysine (Lys8). No significant change of cell line metabolism after GlyProSILC labeling was observed based on transcriptomic, glycomic, and proteomic data. The labeling conditions, labeling efficiency, and quantitation accuracy were investigated. After quantitation correction, we simultaneously quantified 62 N-glycans, 574 proteins, and 344 glycopeptides using the same batch of mixed 231BR/231 cell lines. So far, GlyProSILC provides an accurate and effective quantitation approach for glycomics, proteomics, and glycoproteomics in a cell culture system.


Assuntos
Glicômica , Proteômica , Marcação por Isótopo/métodos , Glicômica/métodos , Proteômica/métodos , Proteínas , Técnicas de Cultura de Células , Glicopeptídeos/metabolismo , Polissacarídeos/química
11.
Biochem Biophys Res Commun ; 643: 147-156, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36609155

RESUMO

An increasing number of experimental and clinical observation suggest that the use of anaesthetics is closely associated with postoperative central nervous system (CNS) complications, such as delirium and cognitive dysfunction. Brain energy rescue is an emerging therapeutic strategy for central nervous system disease (CNSDs). However, the effect of anaesthetics on nerve cell energy utilisation, especially microglia, and its potential effects on cell function still unclear. Elucidating the effects of anaesthetics on lipid droplets, which are specific lipid storage organs, and phagocytosis of microglia is crucial to discover a new therapeutic concept for postoperative CNS complications. Here, we studied the effects of the commonly used anaesthetic midazolam on lipid droplets and phagocytosis in immortalised microglial BV2 cells. Lipid droplets were assessed by flow cytometry and triglyceride quantification. The phagocytosis of BV2 cells was evaluated by detecting their phagocytosis by latex beads. Additionally, the autophagy of BV2 cells was evaluated by western blot and observation under microscopy. Our results showed that midazolam caused lipid droplet accumulation and reduced phagocytosis in BV2 cells, and inhibition of lipid droplet accumulation partially restored phagocytosis. Furthermore, midazolam blocks autophagic degradation by increasing phosphorylated TFEB in BV2 cells, inhibition of midazolam-increased phosphorylated TFEB might contribute to the improvement of autophagic flux by rapamycin. Moreover, promoting autophagy reverse the lipid droplet accumulation and phagocytosis decrease. This study suggests autophagy is a target for attenuating lipid droplet accumulation, normal degradation of lipid droplets is important for maintaining microglia phagocytosis and attenuating the side effects of midazolam on the CNS.


Assuntos
Gotículas Lipídicas , Midazolam , Midazolam/farmacologia , Fagocitose , Autofagia , Microglia/metabolismo
12.
Eur Radiol ; 33(5): 3638-3646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905470

RESUMO

OBJECTIVES: This study aimed to investigate whether a deep learning (DL) model based on preoperative MR images of primary tumors can predict lymph node metastasis (LNM) in patients with stage T1-2 rectal cancer. METHODS: In this retrospective study, patients with stage T1-2 rectal cancer who underwent preoperative MRI between October 2013 and March 2021 were included and assigned to the training, validation, and test sets. Four two-dimensional and three-dimensional (3D) residual networks (ResNet18, ResNet50, ResNet101, and ResNet152) were trained and tested on T2-weighted images to identify patients with LNM. Three radiologists independently assessed LN status on MRI, and diagnostic outcomes were compared with the DL model. Predictive performance was assessed with AUC and compared using the Delong method. RESULTS: In total, 611 patients were evaluated (444 training, 81 validation, and 86 test). The AUCs of the eight DL models ranged from 0.80 (95% confidence interval [CI]: 0.75, 0.85) to 0.89 (95% CI: 0.85, 0.92) in the training set and from 0.77 (95% CI: 0.62, 0.92) to 0.89 (95% CI: 0.76, 1.00) in the validation set. The ResNet101 model based on 3D network architecture achieved the best performance in predicting LNM in the test set, with an AUC of 0.79 (95% CI: 0.70, 0.89) that was significantly greater than that of the pooled readers (AUC, 0.54 [95% CI: 0.48, 0.60]; p < 0.001). CONCLUSION: The DL model based on preoperative MR images of primary tumors outperformed radiologists in predicting LNM in patients with stage T1-2 rectal cancer. KEY POINTS: • Deep learning (DL) models with different network frameworks showed different diagnostic performance for predicting lymph node metastasis (LNM) in patients with stage T1-2 rectal cancer. • The ResNet101 model based on 3D network architecture achieved the best performance in predicting LNM in the test set. • The DL model based on preoperative MR images outperformed radiologists in predicting LNM in patients with stage T1-2 rectal cancer.


Assuntos
Aprendizado Profundo , Neoplasias Retais , Humanos , Metástase Linfática/patologia , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/patologia
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1186-1190, 2023 Nov 15.
Artigo em Zh | MEDLINE | ID: mdl-37990466

RESUMO

The patient is a female infant, 4 months and 9 days old, who was admitted to the hospital due to recurrent fever, cough, and hepatomegaly for over a month. The patient was a healthy full-term infant with a normal birth history. At 2 months and 22 days after birth, she developed recurrent fever, cough, and respiratory distress. Chest imaging revealed diffuse bilateral lung lesions, and fiberoptic bronchoscopy showed interstitial changes in both lungs. These suggested the presence of interstitial lung disease. The patient also presented with hepatomegaly, anemia, hyperlipidemia, hypothyroidism, and malnutrition. Genetic testing indicated compound heterozygous variations in the MARS1 gene. This mutation can cause interstitial lung and liver disease, which is a severe rare disorder that typically manifests in infancy or early childhood. It is inherited in an autosomal recessive manner and characterized by early-onset respiratory insufficiency and liver disease in infants or young children. Since its first reported case in 2013, as of June 2023, only 38 related cases have been reported worldwide. This article reports the multidisciplinary diagnosis and treatment of interstitial lung and liver disease in an infant caused by MARS1 gene mutation.


Assuntos
Hepatopatias , Doenças Pulmonares Intersticiais , Feminino , Humanos , Lactente , Tosse , Hepatomegalia/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Mutação
14.
Anal Chem ; 94(28): 10003-10010, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35776110

RESUMO

Glycosylation is a post-translational modification involved in many important biological functions. The aberrant alteration of glycan structure is implicit with malfunction of cells and possess potential significance in medical diagnosis of complex diseases such as cancer. Liquid chromatography tandem mass spectrometry (LC-MS/MS) has been commonly applied to the analysis of complex glycomic samples. However, the characterization of isomeric glycans from their MS/MS spectra in complex biological samples remains challenging. In this paper, we present a novel reciprocal best-hit glycan-spectrum matching (RB-GSM) approach toward characterizing N-glycans. In this method, the MS/MS spectra in the input data set are evaluated against all glycans with the matched precursor mass using customized scoring functions, where a glycan-spectrum matching (GSM) is considered to be true if it is a reciprocal best-hit, that is, it receives the highest score among not only the GSMs between the respective spectrum and all matched glycans, but also the GSMs between the respective glycan and all matched MS/MS spectra in the input data set. We evaluated this RB-GSM approach on N-glycan identification using MS/MS spectra acquired from glycan standards as well as those released from the model glycoprotein fetuin, immunoglobulin G, and human serum samples, which showed the RB-GSM is capable of distinguishing isomeric glycans.


Assuntos
Polissacarídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Glicosilação , Humanos , Isomerismo , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos
15.
Anal Chem ; 94(3): 1910-1917, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35006670

RESUMO

The complex and multivariate biological systems and environment are challenging the development of related detection and analysis. It calls for the multiresponsive and facile sensing material and method for multi-analyte identification. In this work, we proposed an elastic-electric coefficient sensitivity strategy with hydrogel [amino trimethylene phosphonic acid-assisted poly(vinyl alcohol)] to achieve discriminative analysis of various chemicals. Elastic sensitivity based on the Hofmeister effect and electric sensitivity based on hydrated ion migration are explored in detail. With a rational design, the elastic-electric coefficient-sensitive hydrogel can qualify and quantify various kinds of chemicals (cations, anions, amino acids, saccharides, and lactate). The facile hydrogel sensor realized complicated sweat recognition and can be used in various applications such as environment monitoring, disease diagnosis, and athletic training optimization.


Assuntos
Hidrogéis , Suor , Condutividade Elétrica , Eletricidade , Hidrogéis/química , Ácido Láctico/análise , Suor/química
16.
Electrophoresis ; 43(1-2): 119-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505713

RESUMO

The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.


Assuntos
Cromatografia , Glicômica , Espectrometria de Massas em Tandem , Glicosilação , Polissacarídeos
17.
Electrophoresis ; 43(1-2): 370-387, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614238

RESUMO

Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.


Assuntos
Glicopeptídeos , Proteômica , Cromatografia Líquida , Glicopeptídeos/química , Glicosilação , Espectrometria de Massas/métodos , Proteômica/métodos
18.
J Magn Reson Imaging ; 56(4): 1130-1142, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35142001

RESUMO

BACKGROUND: Histopathologic evaluation after surgery is the gold standard to evaluate treatment response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). However, it cannot be used to guide organ-preserving strategies due to poor timeliness. PURPOSE: To develop and validate a multiscale model incorporating radiomics and pathomics features for predicting pathological good response (pGR) of down-staging to stage ypT0-1N0 after nCRT. STUDY TYPE: Retrospective. POPULATION: A total of 153 patients (median age, 55 years; 109 men; 107 training group; 46 validation group) with clinicopathologically confirmed LARC. FIELD STRENGTH/SEQUENCE: A 3.0-T; fast spin echo T2 -weighted and single-shot EPI diffusion-weighted images. ASSESSMENT: The differences in clinicoradiological variables between pGR and non-pGR groups were assessed. Pretreatment and posttreatment radiomics signatures, and pathomics signature were constructed. A multiscale pGR prediction model was established. The predictive performance of the model was evaluated and compared to that of the clinicoradiological model. STATISTICAL TESTS: The χ2 test, Fisher's exact test, t-test, the minimum redundancy maximum relevance algorithm, the least absolute shrinkage and selection operator logistic regression algorithm, regression analysis, receiver operating characteristic curve (ROC) analysis, Delong method. P < 0.05 indicated a significant difference. RESULTS: Pretreatment radiomics signature (odds ratio [OR] = 2.53; 95% CI: 1.58-4.66), posttreatment radiomics signature (OR = 9.59; 95% CI: 3.04-41.46), and pathomics signature (OR = 3.14; 95% CI: 1.40-8.31) were independent factors for predicting pGR. The multiscale model presented good predictive performance with areas under the curve (AUC) of 0.93 (95% CI: 0.88-0.98) and 0.90 (95% CI: 0.78-1.00) in the training and validation groups, those were significantly higher than that of the clinicoradiological model with AUCs of 0.69 (95% CI: 0.55-0.82) and 0.68 (95% CI: 0.46-0.91) in both groups. DATA CONCLUSION: A model incorporating radiomics and pathomics features effectively predicted pGR after nCRT in patients with LARC. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 4.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Quimiorradioterapia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/terapia , Reto/diagnóstico por imagem , Reto/patologia , Estudos Retrospectivos
19.
Analyst ; 147(10): 2048-2059, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35311852

RESUMO

Glycosylation is known as a critical biological process that can largely affect the properties and the functions of proteins. Glycan isomers have been shown to be involved in a variety of disease progressions. However, the separation and identification of glycan isomers has been a challenge for years due to the microheterogeneity of glycan isomeric structures. Therefore, effective and stable techniques have been investigated over the last few decades to improve isomeric separations of glycans. RPLC has been widely used in biomolecule analysis because of its extraordinary reproducibility and reliability in retention time and separation resolution. However, so far, no studies have achieved high resolution of glycan isomers using this technique. In this study, we focused on further boosting the isomeric separation of permethylated glycans using a 500 mm reversed-phase LC column. To achieve better resolutions on permethylated glycans, different LC conditions were optimized using glycan standards, including core- and branch-fucosylated N-glycan isomers and sialic acid linked isomers, which were both successfully separated. Then, the optimal separation strategy was applied to achieve separations of N- and O-glycan isomers derived from model glycoproteins, including bovine fetuin, ribonuclease B and κ-casein. Baseline separations were observed on multiple sialylated linkage isomers. However, the separation performance of high-mannose isomers needs further improvement. The reproducibility and stability of this long C18 column was also tested by doing run-to-run, day-to-day and month-to-month comparisons of retention times on multiple glycans and the %RSD was found less than 0.92%. Finally, we applied this approach to separate glycan isomers derived from complex biological samples, including blood serum and cell lines, where baseline separations were attained on several isomeric structures. Compared to the separation efficiency of PGC and MGC columns, the RPLC C18 column provides lower resolution but more robust reproducibility, which makes it a good complementary alternative for isomeric separations of glycans.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida , Isomerismo , Polissacarídeos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
20.
Ecotoxicol Environ Saf ; 238: 113568, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490575

RESUMO

Chlorinated disinfection byproducts in water posed potential health threat to humans. Nowadays, chlorinated derivatives of diazepam were ubiquitously detected in drinking water. Among these derivatives, 2-methylamino-5-chlorobenzophenone (MACB) was capable of penetrating the blood-brain barrier (BBB) and induced microglial phagocytosis of neurons in zebrafish. However, little is known about the MACB metabolism in vivo. Here, we determined the metabolism of MACB in zebrafish and microglia cell model. We found that MACB mainly disrupted the metabolism of branched-chain amino acids (Leu, Ile and Val) in zebrafish model and gamma-aminobutyric acid (GABA) pathway-related amino acids in microglia model. Additionally, we demonstrated that MACB can be metabolized by the mixed-function oxidase CYP1A2 enzyme which could be inhibited by estrogen causing the gender-difference in the accumulation of MACB in vivo. These results indicated that MACB perturbed metabolism and induced neurological disorders, particularly in the female zebrafish.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Barreira Hematoencefálica , Cloro/toxicidade , Diazepam/química , Diazepam/farmacologia , Desinfecção/métodos , Feminino , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA