RESUMO
The production and certification of a series of azaspiracid (AZA) calibration solution reference materials is described. Azaspiracids were isolated from contaminated mussels, purified by preparative liquid chromatography and dried under vacuum to the anhydrous form. The purity was assessed by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The final concentration of each AZA in a CD(3)OH stock solution was determined by quantitative NMR spectroscopy. This solution was then diluted very accurately in degassed, high purity methanol to a concentration of 1.47 ± 0.08 µmol/L for CRM-AZA1, 1.52 ± 0.05 µmol/L for CRM-AZA2, and 1.37 ± 0.13 µmol/L for CRM-AZA3. Aliquots were dispensed into argon-filled glass ampoules, which were immediately flame-sealed. The calibration solutions are suitable for method development, method validation, calibration of liquid chromatography or mass spectrometry instrumentation and quality control of shellfish monitoring programs.
Assuntos
Furanos/análise , Toxinas Marinhas/análise , Piranos/análise , Frutos do Mar , Compostos de Espiro/análise , Animais , Bivalves/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Soluções/químicaRESUMO
Okadaic acid (OA) and its analogs dinophysistoxins-1 (DTX1) and -2 (DTX2) are lipophilic polyethers produced by marine dinoflagellates. These toxins accumulate in shellfish and cause diarrhetic shellfish poisoning (DSP) in humans. Regulatory testing of shellfish is essential to safeguard public health and for international trade. Certified reference materials (CRMs) play a key role in analytical monitoring programs. This paper presents an overview of the interdisciplinary work that went into the planning, production, and certification of calibration-solution CRMs for OA, DTX1, and DTX2. OA and DTX1 were isolated from large-scale algal cultures and DTX2 from naturally contaminated mussels. Toxins were isolated by a combination of extraction and chromatographic steps with processes adapted to suit the source and concentration of each toxin. New 19-epi-DSP toxin analogs were identified as minor impurities. Once OA, DTX1, and DTX2 were established to be of suitable purity, solutions were prepared and dispensed into flame-sealed glass ampoules. Certification measurements were carried out using quantitative NMR spectroscopy and LC-tandem MS. Traceability of measurements was established through certified external standards of established purity. Uncertainties were assigned following standards and guidelines from the International Organization for Standardization, with components from the measurement, stability, and homogeneity studies being propagated into final combined uncertainties.