Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(50): 15684-7, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26645387

RESUMO

The Newman-Kwart rearrangement is perhaps the quintessential method for the synthesis of thiophenols from the corresponding phenol. However, the high thermal conditions required for the rearrangement of the requisite O-aryl carbamothioates often leads to decomposition. Herein, we present a general strategy for catalysis of O-aryl carbamothioates to S-aryl carbamothioates using catalytic quantities of a commercially available organic single-electron photooxidant. Importantly, this reaction is facilitated at ambient temperatures.

2.
J Am Chem Soc ; 137(24): 7580-3, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26050662

RESUMO

Metal-free, visible light-initiated, living cationic polymerization of 4-methoxystyrene using 2,4,6-tri(p-tolyl)pyrylium tetrafluoroborate and methanol is demonstrated. Molecular weight and dispersity are controlled by the concentration of methanol. Initial mechanistic analysis suggests that methanol likely serves to regulate propagation of the cation chain end via reversible chain transfer in a manner analogous to reversible addition-fragmentation chain transfer polymerization.

3.
Sci Adv ; 10(11): eadj6406, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489355

RESUMO

There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.


Assuntos
Mycobacterium tuberculosis , Neoplasias , Quinazolinas , Tiofenos , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Mycobacterium tuberculosis/metabolismo , Timidilato Sintase/metabolismo , Proteínas de Bactérias/metabolismo
4.
J Am Chem Soc ; 135(28): 10334-7, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23808532

RESUMO

A direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes is reported. The catalyst system is comprised of the Fukuzumi acridinium photooxidant (1) and a substoichiometric quantity of a hydrogen-atom donor. Oxidizable olefins, such as styrenes, trisubstituted aliphatic alkenes, and enamides, can be employed along with a variety of carboxylic acids to afford the anti-Markovnikov addition adducts exclusively. A deuterium-labeling experiment lends insight to the potential mechanism.


Assuntos
Acetatos/síntese química , Alcenos/química , Ácidos Carboxílicos/química , Acetatos/química , Catálise , Estrutura Molecular
5.
ACS Med Chem Lett ; 14(7): 970-976, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465309

RESUMO

4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme for Mycobacterium tuberculosis (Mtb) survival and virulence and therefore an attractive target for a tuberculosis therapeutic. In this work, two modeling-informed approaches toward the isosteric replacement of the amidinourea moiety present in the previously reported PptT inhibitor AU 8918 are reported. Although a designed 3,5-diamino imidazole unexpectedly adopted an undesired tautomeric form and was inactive, replacement of the amidinourea moiety afforded a series of active PptT inhibitors containing 2,6-diaminopyridine scaffolds.

6.
J Med Chem ; 65(3): 1996-2022, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35044775

RESUMO

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).


Assuntos
Proteínas de Bactérias/metabolismo , Guanidina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ureia/análogos & derivados , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Guanidina/química , Guanidina/metabolismo , Guanidina/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/química , Ureia/metabolismo , Ureia/farmacologia
7.
ACS Infect Dis ; 8(3): 557-573, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35192346

RESUMO

Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of ß-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 ß-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of ß-lactams screened were active against Mtb, many without a ß-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Animais , Indústria Farmacêutica , Camundongos , SARS-CoV-2 , Universidades , beta-Lactamas/farmacologia
8.
J Antibiot (Tokyo) ; 72(6): 469-475, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903100

RESUMO

A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to ß-lactam cleavage in mouse plasma.


Assuntos
Antibacterianos/sangue , Antibacterianos/química , Cefalosporinas/sangue , Cefalosporinas/química , Animais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
9.
ACS Infect Dis ; 5(8): 1433-1445, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184461

RESUMO

The historical view of ß-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a ß-lactamase inhibitor. However, most antimycobacterial ß-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 ß-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a ß-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A ß-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent ß-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.


Assuntos
Antituberculosos/farmacologia , Cefalosporinas/farmacologia , Replicação do DNA , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/farmacologia , Tionas/farmacologia , Administração Oral , Animais , Antituberculosos/administração & dosagem , Callithrix , Cefalosporinas/administração & dosagem , Descoberta de Drogas , Feminino , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mycobacterium tuberculosis/fisiologia , Piridinas/administração & dosagem , Tionas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA