Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291798

RESUMO

BACKGROUND: Quantitative magnetic resonance imaging (MRI) metrics could be used in personalized medicine to assess individuals against normative distributions. Conventional Zscore analysis is inadequate in the presence of non-Gaussian distributions. Therefore, if quantitative MRI metrics deviate from normality, an alternative is needed. PURPOSE: To confirm non-Gaussianity of diffusion MRI (dMRI) metrics on a publicly available dataset, and to propose a novel percentile-based method, "Pscore" to address this issue. STUDY TYPE: Retrospective cohort. POPULATION: Nine hundred and sixty-one healthy young adults (age: 22-35 years, females: 53%) from the Human Connectome Project. FIELD STRENGTH/SEQUENCE: 3-T, spin-echo diffusion echo-planar imaging, T1-weighted: MPRAGE. ASSESSMENT: The dMRI data were preprocessed using the TORTOISE pipeline. Forty-eight regions of interest (ROIs) from the JHU atlas were redrawn on a study-specific diffusion tensor (DT) template and average values were computed from various DT and mean apparent propagator (MAP) metrics. For each ROI, percentile ranks across participants were computed to generate "Pscores"-which normalized the difference between the median and a participant's value with the corresponding difference between the median and the 5th/95th percentile values. STATISTICAL TESTS: ROI-wise distributions were assessed using log transformations, Zscore, and the "Pscore" methods. The percentages of extreme values above-95th and below-5th percentile boundaries (PEV>95 (%), PEV<5 (%)) were also assessed in the overall white matter. Bootstrapping was performed to test the reliability of Pscores in small samples (N = 100) using 100 iterations. RESULTS: The dMRI metric distributions were systematically non-Gaussian, including positively skewed (eg, mean and radial diffusivity) and negatively skewed (eg, fractional and propagator anisotropy) metrics. This resulted in unbalanced tails in Zscore distributions (PEV>95 ≠ 5%, PEV<5 ≠ 5%) whereas "Pscore" distributions were symmetric and balanced (PEV>95 = PEV<5 = 5%); even for small bootstrapped samples (average PEV > 95 ¯ = PEV < 5 ¯ = 5 ± 0 % $$ \overline{{\mathrm{PEV}}_{>95}}=\overline{{\mathrm{PEV}}_{<5}}=5\pm 0\% $$ [SD]). DATA CONCLUSION: The inherent skewness observed for dMRI metrics may preclude the use of conventional Zscore analysis. The proposed "Pscore" method may help estimating individual deviations more accurately in skewed normative data, even from small datasets. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.

2.
JAMA ; 331(13): 1109-1121, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497797

RESUMO

Importance: Since 2015, US government and related personnel have reported dizziness, pain, visual problems, and cognitive dysfunction after experiencing intrusive sounds and head pressure. The US government has labeled these anomalous health incidents (AHIs). Objective: To assess whether participants with AHIs differ significantly from US government control participants with respect to clinical, research, and biomarker assessments. Design, Setting, and Participants: Exploratory study conducted between June 2018 and July 2022 at the National Institutes of Health Clinical Center, involving 86 US government staff and family members with AHIs from Cuba, Austria, China, and other locations as well as 30 US government control participants. Exposures: AHIs. Main Outcomes and Measures: Participants were assessed with extensive clinical, auditory, vestibular, balance, visual, neuropsychological, and blood biomarkers (glial fibrillary acidic protein and neurofilament light) testing. The patients were analyzed based on the risk characteristics of the AHI identifying concerning cases as well as geographic location. Results: Eighty-six participants with AHIs (42 women and 44 men; mean [SD] age, 42.1 [9.1] years) and 30 vocationally matched government control participants (11 women and 19 men; mean [SD] age, 43.8 [10.1] years) were included in the analyses. Participants with AHIs were evaluated a median of 76 days (IQR, 30-537) from the most recent incident. In general, there were no significant differences between participants with AHIs and control participants in most tests of auditory, vestibular, cognitive, or visual function as well as levels of the blood biomarkers. Participants with AHIs had significantly increased fatigue, depression, posttraumatic stress, imbalance, and neurobehavioral symptoms compared with the control participants. There were no differences in these findings based on the risk characteristics of the incident or geographic location of the AHIs. Twenty-four patients (28%) with AHI presented with functional neurological disorders. Conclusions and Relevance: In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for objective and self-reported measures of imbalance and symptoms of fatigue, posttraumatic stress, and depression. This study did not replicate the findings of previous studies, although differences in the populations included and the timing of assessments limit direct comparisons.


Assuntos
Família , Governo , Masculino , Humanos , Feminino , Adulto , Biomarcadores , Fadiga , Medidas de Segurança
3.
JAMA ; 331(13): 1122-1134, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497822

RESUMO

Importance: US government personnel stationed internationally have reported anomalous health incidents (AHIs), with some individuals experiencing persistent debilitating symptoms. Objective: To assess the potential presence of magnetic resonance imaging (MRI)-detectable brain lesions in participants with AHIs, with respect to a well-matched control group. Design, Setting, and Participants: This exploratory study was conducted at the National Institutes of Health (NIH) Clinical Center and the NIH MRI Research Facility between June 2018 and November 2022. Eighty-one participants with AHIs and 48 age- and sex-matched control participants, 29 of whom had similar employment as the AHI group, were assessed with clinical, volumetric, and functional MRI. A high-quality diffusion MRI scan and a second volumetric scan were also acquired during a different session. The structural MRI acquisition protocol was optimized to achieve high reproducibility. Forty-nine participants with AHIs had at least 1 additional imaging session approximately 6 to 12 months from the first visit. Exposure: AHIs. Main Outcomes and Measures: Group-level quantitative metrics obtained from multiple modalities: (1) volumetric measurement, voxel-wise and region of interest (ROI)-wise; (2) diffusion MRI-derived metrics, voxel-wise and ROI-wise; and (3) ROI-wise within-network resting-state functional connectivity using functional MRI. Exploratory data analyses used both standard, nonparametric tests and bayesian multilevel modeling. Results: Among the 81 participants with AHIs, the mean (SD) age was 42 (9) years and 49% were female; among the 48 control participants, the mean (SD) age was 43 (11) years and 42% were female. Imaging scans were performed as early as 14 days after experiencing AHIs with a median delay period of 80 (IQR, 36-544) days. After adjustment for multiple comparisons, no significant differences between participants with AHIs and control participants were found for any MRI modality. At an unadjusted threshold (P < .05), compared with control participants, participants with AHIs had lower intranetwork connectivity in the salience networks, a larger corpus callosum, and diffusion MRI differences in the corpus callosum, superior longitudinal fasciculus, cingulum, inferior cerebellar peduncle, and amygdala. The structural MRI measurements were highly reproducible (median coefficient of variation <1% across all global volumetric ROIs and <1.5% for all white matter ROIs for diffusion metrics). Even individuals with large differences from control participants exhibited stable longitudinal results (typically, <±1% across visits), suggesting the absence of evolving lesions. The relationships between the imaging and clinical variables were weak (median Spearman ρ = 0.10). The study did not replicate the results of a previously published investigation of AHIs. Conclusions and Relevance: In this exploratory neuroimaging study, there were no significant differences in imaging measures of brain structure or function between individuals reporting AHIs and matched control participants after adjustment for multiple comparisons.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Feminino , Adulto , Masculino , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Substância Branca/patologia , Família , Governo , Medidas de Segurança
4.
Hum Mol Genet ; 28(9): 1530-1547, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602030

RESUMO

Epilepsy, deafness, onychodystrophy, osteodystrophy and intellectual disability are associated with a spectrum of mutations of human TBC1D24. The mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 are not well understood. Using CRISPR-Cas9 genome editing, we engineered a mouse with a premature translation stop codon equivalent to human S324Tfs*3, a recessive mutation of TBC1D24 associated with early infantile epileptic encephalopathy (EIEE). Homozygous S324Tfs*3 mice have normal auditory and vestibular functions but show an abrupt onset of spontaneous seizures at postnatal day 15 recapitulating human EIEE. The S324Tfs*3 variant is located in an alternatively spliced micro-exon encoding six perfectly conserved amino acids incorporated postnatally into TBC1D24 protein due to a micro-exon utilization switch. During embryonic and early postnatal development, S324Tfs*3 homozygotes produce predominantly the shorter wild-type TBC1D24 protein isoform that omits the micro-exon. S324Tfs*3 homozygotes show an abrupt onset of seizures at P15 that correlates with a developmental switch to utilization of the micro-exon. A mouse deficient for alternative splice factor SRRM3 impairs incorporation of the Tbc1d24 micro-exon. Wild-type Tbc1d24 mRNA is abundantly expressed in the hippocampus using RNAscope in situ hybridization. Immunogold electron microscopy using a TBC1D24-specific antibody revealed that TBC1D24 is associated with clathrin-coated vesicles and synapses of hippocampal neurons, suggesting a crucial role of TBC1D24 in vesicle trafficking important for neuronal signal transmission. This is the first characterization of a mouse model of human TBC1D24-associated EIEE that can now be used to screen for antiepileptogenic drugs ameliorating TBCID24 seizure disorders.


Assuntos
Proteínas Ativadoras de GTPase/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Análise Mutacional de DNA , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Magn Reson Med ; 85(5): 2696-2708, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331068

RESUMO

PURPOSE: To assess the effects of blip-up and -down echo planar imaging (EPI) acquisition designs, with different choices of phase-encoding directions (PEDs) on the reproducibility of diffusion MRI (dMRI)-derived metrics in the human brain. METHODS: Diffusion MRI data in seven subjects were acquired five times, each with five different protocols. The base design included 64 diffusion directions acquired with anterior-posterior (AP) PED, the first and second protocols added reverse phase-encoded b=0s/mm2 posterior-anterior (PA) PED images. The third one included 32 directions all with PED acquisitions with opposite polarity (AP and PA). The fourth protocol, also with 32 unique directions used four PEDs (AP, PA, right-left (RL), and left-right (LR)). The scan time was virtually identical for all protocols. The variability of diffusion MRI metrics for each subject and each protocol was computed across the different sessions. RESULTS: The highest reproducibility for all dMRI metrics was obtained with protocol four (AP/PA-RL/LR, ie, four-way PED). Protocols that used only b=0s/mm2 for distortion correction, which are the most widely used designs, had the lowest reproducibility. CONCLUSIONS: An acquisition design with four PEDs, including all DWIs in addition to b=0s/mm2 images should be used to achieve high reproducibility in diffusion MRI studies.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Humanos , Reprodutibilidade dos Testes
6.
Magn Reson Med ; 86(6): 3259-3273, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34351007

RESUMO

PURPOSE: To use diffusion measurements to map the spatial dependence of the magnetic field produced by the gradient coils of an MRI scanner with sufficient accuracy to correct errors in quantitative diffusion MRI (DMRI) caused by gradient nonlinearity and gradient amplifier miscalibration. THEORY AND METHODS: The field produced by the gradient coils is expanded in regular solid harmonics. The expansion coefficients are found by fitting a model to a minimum set of diffusion-weighted images of an isotropic diffusion phantom. The accuracy of the resulting gradient coil field maps is evaluated by using them to compute corrected b-matrices that are then used to process a multi-shell diffusion tensor imaging (DTI) dataset with 32 diffusion directions per shell. RESULTS: The method substantially reduces both the spatial inhomogeneity of the computed mean diffusivities (MD) and the computed values of the fractional anisotropy (FA), as well as virtually eliminating any artifactual directional bias in the tensor field secondary to gradient nonlinearity. When a small scaling miscalibration was purposely introduced in the x, y, and z, the method accurately detected the amount of miscalibration on each gradient axis. CONCLUSION: The method presented detects and corrects the effects of gradient nonlinearity and gradient gain miscalibration using a simple isotropic diffusion phantom. The correction would improve the accuracy of DMRI measurements in the brain and other organs for both DTI and higher order diffusion analysis. In particular, it would allow calibration of MRI systems, improving data harmony in multicenter studies.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Anisotropia , Imageamento por Ressonância Magnética , Imagens de Fantasmas
7.
Neuroimage ; 221: 117195, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726643

RESUMO

We describe a practical two-dimensional (2D) diffusion MRI framework to deliver specificity and improve sensitivity to axonal injury in the spinal cord. This approach provides intravoxel distributions of correlations of water mobilities in orthogonal directions, revealing sub-voxel diffusion components. Here we use it to investigate water diffusivities along axial and radial orientations within spinal cord specimens with confirmed, tract-specific axonal injury. First, we show using transmission electron microscopy and immunohistochemistry that tract-specific axonal beading occurs following Wallerian degeneration in the cortico-spinal tract as direct sequelae to closed head injury. We demonstrate that although some voxel-averaged diffusion tensor imaging (DTI) metrics are sensitive to this axonal injury, they are non-specific, i.e., they do not reveal an underlying biophysical mechanism of injury. Then we employ 2D diffusion correlation imaging (DCI) to improve discrimination of different water microenvironments by measuring and mapping the joint water mobility distributions perpendicular and parallel to the spinal cord axis. We determine six distinct diffusion spectral components that differ according to their microscopic anisotropy and mobility. We show that at the injury site a highly anisotropic diffusion component completely disappears and instead becomes more isotropic. Based on these findings, an injury-specific MR image of the spinal cord was generated, and a radiological-pathological correlation with histological silver staining % area was performed. The resulting strong and significant correlation (r=0.70,p < 0.0001) indicates the high specificity with which DCI detects injury-induced tissue alterations. We predict that the ability to selectively image microstructural changes following axonal injury in the spinal cord can be useful in clinical and research applications by enabling specific detection and increased sensitivity to injury-induced microstructural alterations. These results also encourage us to translate DCI to higher spatial dimensions to enable assessment of traumatic axonal injury, and possibly other diseases and disorders in the brain.


Assuntos
Axônios/patologia , Medula Cervical/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Traumatismos Cranianos Fechados/complicações , Neuroimagem/métodos , Tratos Piramidais/diagnóstico por imagem , Degeneração Walleriana/diagnóstico por imagem , Animais , Medula Cervical/patologia , Tomografia com Microscopia Eletrônica , Furões , Imuno-Histoquímica , Masculino , Tratos Piramidais/patologia , Sensibilidade e Especificidade , Degeneração Walleriana/etiologia , Degeneração Walleriana/patologia
8.
J Neurosci Res ; 98(11): 2232-2244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840025

RESUMO

Previous studies suggest that long-term supplementation and dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) may have neuroprotective effects following brain injury. The objective of this study was to investigate potential neuroprotective effects of omega-3 PUFAs on white matter following closed-head trauma. The closed-head injury model of engineered rotational acceleration (CHIMERA) produces a reproducible injury in the optic tract and brachium of the superior colliculus in mice. Damage is detectable using diffusion tensor imaging (DTI) metrics, particularly fractional anisotropy (FA), with sensitivity comparable to histology. We acquired in vivo (n = 38) and ex vivo (n = 41) DTI data in mice divided into sham and CHIMERA groups with two dietary groups: one deficient in omega-3 PUFAs and one adequate in omega-3 PUFAs. We examined injury effects (reduction in FA) and neuroprotection (FA reduction modulated by diet) in the optic tract and brachium. We verified that diet did not affect FA in sham animals. In injured animals, we found significantly reduced FA in the optic tract and brachium (~10% reduction, p < 0.001), and Bayes factor analysis showed strong evidence to reject the null hypothesis. However, Bayes factor analysis showed substantial evidence to accept the null hypothesis of no diet-related FA differences in injured animals in the in vivo and ex vivo samples. Our results indicate no neuroprotective effect from adequate dietary omega-3 PUFA intake on white matter damage following traumatic brain injury. Since damage from CHIMERA mainly affects white matter, our results do not necessarily contradict previous findings showing omega-3 PUFA-mediated neuroprotection in gray matter.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Dieta , Ácidos Graxos Ômega-3/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Substância Branca/diagnóstico por imagem , Substância Branca/lesões , Animais , Teorema de Bayes , Imagem de Tensor de Difusão , Substância Cinzenta/patologia , Traumatismos Cranianos Fechados/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trato Óptico/diagnóstico por imagem , Trato Óptico/lesões , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/lesões
9.
Neuroimage ; 185: 1-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317017

RESUMO

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/anatomia & histologia , Humanos
10.
Magn Reson Med ; 81(4): 2774-2787, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394561

RESUMO

PURPOSE: To propose a methodology for assessment of algorithms that correct distortions due to motion, eddy-currents, and echo planar imaging in diffusion weighted images (DWIs). METHODS: The proposed method evaluates correction performance by measuring variability across datasets of the same object acquired with images having distortions in different directions, thereby overcoming the unavailability of ground-truth, undistorted DWIs. A comprehensive diffusion MRI dataset, collected using a suitable experimental design, is made available to the scientific community, consisting of three DWI shells (Bmax = 5000 s/mm2 ), 30 gradient directions, a replicate set of antipodal gradient directions, four phase-encoding directions, and three different head orientations. The proposed methodology was tested using the TORTOISE diffusion MRI processing pipeline. RESULTS: The median variability of the original distorted data was 123% higher for DWIs, 100-168% higher for tensor-derived metrics and 28-111% higher for MAPMRI metrics, than in the corrected versions. EPI distortions induced substantial variability, nearly comparable to the contribution of eddy-current distortions. CONCLUSIONS: The dataset and the evaluation strategy proposed herein enable quantitative comparison of different methods for correction of distortions due to motion, eddy-currents, and other EPI distortions, and can be useful in benchmarking newly developed algorithms.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Algoritmos , Anisotropia , Artefatos , Bases de Dados Factuais , Cabeça , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Probabilidade , Reprodutibilidade dos Testes
11.
Eur Radiol ; 29(2): 770-782, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30066250

RESUMO

OBJECTIVES: To describe the spectrum of brainstem malformations associated to mutations in the tubulin genes taking advantage of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). METHODS: Fifteen patients (six males; median age, 1.25 years; range, 1 month to 31 years) with mutations in the tubulin genes (TUBA1A = 8, TUBB2B = 4, TUBB3 = 3) studied with MRI and DTI were included in the study. Brain MR exams were reviewed to describe the malformative aspects of the brainstem. Malformations of the supratentorial brain and cerebellum were also recorded. Tractography was performed in seven selected cases. RESULTS: Fourteen patients (93%) showed complex malformations of the brainstem. Most common findings, apparent on anatomical MR sequences, were brainstem asymmetry (12 cases, 5 of which with a crossed pattern characterised by a hypertrophic right medulla oblongata and hypertrophic left pons), short and small pons on midline (10 cases) and anterior brainstem clefting (6 cases). DTI revealed abnormal transverse pontine fibres (13 cases), fusion of corticospinal tracts and medial lemnisci (9 cases) and a small decussation of the superior cerebellar peduncles (7 cases). CONCLUSIONS: Conventional/anatomical MRI and DTI reveal a complex pattern of brainstem malformations associated with tubulin genes mutations. KEY POINTS: • Brainstem malformations affect 93% patients with mutated tubulin genes • MRI shows homolateral and crossed brainstem asymmetries, clefts and pons hypoplasia • DTI demonstrates irregular representation of transverse pontine fibres and fusion of corticospinal tracts.


Assuntos
Tronco Encefálico/anormalidades , Tronco Encefálico/diagnóstico por imagem , Mutação , Tubulina (Proteína)/genética , Adulto , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Ponte/anormalidades , Ponte/diagnóstico por imagem , Tratos Piramidais/patologia , Substância Branca/anormalidades , Substância Branca/diagnóstico por imagem
12.
Neuroimage ; 173: 25-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29458189

RESUMO

Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Ritmo Circadiano , Adulto , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Adulto Jovem
13.
Hum Brain Mapp ; 39(12): 4643-4651, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30253021

RESUMO

Tensor-based morphometry (TBM) performed using T1-weighted images (T1WIs) is a well-established method for analyzing local morphological changes occurring in the brain due to normal aging and disease. However, in white matter regions that appear homogeneous on T1WIs, T1W-TBM may be inadequate for detecting changes that affect specific pathways. In these regions, diffusion tensor MRI (DTI) can identify white matter pathways on the basis of their different anisotropy and orientation. In this study, we propose performing TBM using deformation fields constructed using all scalar and directional information provided by the diffusion tensor (DTBM) with the goal of increasing sensitivity in detecting morphological abnormalities of specific white matter pathways. Previously, mostly fractional anisotropy (FA) has been used to drive registration in diffusion MRI-based TBM (FA-TBM). However, FA does not have the directional information that the tensors contain, therefore, the registration based on tensors provides better alignment of brain structures and better localization of volume change. We compare our DTBM method to both T1W-TBM and FA-TBM in investigating differences in brain morphology between patients with complicated hereditary spastic paraplegia of type 11 (SPG11) and a group of healthy controls. Effect size maps of T1W-TBM of SPG11 patients showed diffuse atrophy of white matter. However, DTBM indicated that atrophy was more localized, predominantly affecting several long-range pathways. The results of our study suggest that DTBM could be a powerful tool for detecting morphological changes of specific white matter pathways in normal brain development and aging, as well as in degenerative disorders.


Assuntos
Imagem de Tensor de Difusão/métodos , Paraplegia Espástica Hereditária/patologia , Substância Branca/patologia , Adulto , Atrofia/patologia , Feminino , Humanos , Masculino , Paraplegia Espástica Hereditária/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
14.
J Neurosci Res ; 96(4): 612-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28609579

RESUMO

This article provides a review of brain tissue alterations that may be detectable using diffusion magnetic resonance imaging MRI (dMRI) approaches and an overview and perspective on the modern dMRI toolkits for characterizing alterations that follow traumatic brain injury (TBI). Noninvasive imaging is a cornerstone of clinical treatment of TBI and has become increasingly used for preclinical and basic research studies. In particular, quantitative MRI methods have the potential to distinguish and evaluate the complex collection of neurobiological responses to TBI arising from pathology, neuroprotection, and recovery. dMRI provides unique information about the physical environment in tissue and can be used to probe physiological, architectural, and microstructural features. Although well-established approaches such as diffusion tensor imaging are known to be highly sensitive to changes in the tissue environment, more advanced dMRI techniques have been developed that may offer increased specificity or new information for describing abnormalities. These tools are promising, but incompletely understood in the context of TBI. Furthermore, model dependencies and relative limitations may impact the implementation of these approaches and the interpretation of abnormalities in their metrics. The objective of this paper is to present a basic review and comparison across dMRI methods as they pertain to the detection of the most commonly observed tissue and cellular alterations following TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Furões , Camundongos , Ratos
15.
J Neurosci Res ; 96(4): 556-572, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29360208

RESUMO

White matter damage is an important consequence of traumatic brain injury (TBI) in humans. Unlike rodents, ferrets have a substantial amount of white matter and a gyrencephalic brain; therefore, they may represent an ideal small mammal model to study human-pertinent consequences of TBI. Here we report immunohistochemical and behavioral results after a controlled cortical impact (CCI) injury to the sensorimotor cortex of adult male ferrets. We assessed inflammation in the neocortex and white matter, and behavior at 1 day post injury and 1, 4, and 16 weeks post injury (WPI). CCI in the ferret produced inflammation that originated in the neocortex near the site of the injury and progressed deep into the white matter with time. The density of microglia and astrocytes increased in the neocortex near the injury, peaking at 4WPI and remaining elevated at 16WPI. Microglial morphology in the neocortex was significantly altered in the first 4 weeks, but showed a return toward normal at 16 weeks. Clusters of microglial cells in the white matter persisted until 16WPI. We assessed motor and cognitive behavior using the open field, novel object recognition, T-maze, and gait tests. A transient deficit in memory occurred at 4WPI, with a reduction of rearing and motor ability at 12 and 16WPI. Behavioral impairments coincide with features of the inflammatory changes in the neocortex revealed by immunohistochemistry. The ferret represents an important animal model to explore ongoing damage in the white matter and cerebral cortex after TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Progressão da Doença , Aprendizagem em Labirinto , Neocórtex/patologia , Animais , Ansiedade , Proteínas de Ligação ao Cálcio/metabolismo , Furões , Marcha/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Memória de Curto Prazo , Microglia/citologia , Microglia/patologia , Atividade Motora , Reconhecimento Psicológico , Substância Branca/patologia
16.
Microporous Mesoporous Mater ; 269: 156-159, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337835

RESUMO

Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.

17.
Proc Natl Acad Sci U S A ; 112(21): E2820-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964365

RESUMO

In vivo tractography based on diffusion magnetic resonance imaging (dMRI) has opened new doors to study structure-function relationships in the human brain. Initially developed to map the trajectory of major white matter tracts, dMRI is used increasingly to infer long-range anatomical connections of the cortex. Because axonal projections originate and terminate in the gray matter but travel mainly through the deep white matter, the success of tractography hinges on the capacity to follow fibers across this transition. Here we demonstrate that the complex arrangement of white matter fibers residing just under the cortical sheet poses severe challenges for long-range tractography over roughly half of the brain. We investigate this issue by comparing dMRI from very-high-resolution ex vivo macaque brain specimens with histological analysis of the same tissue. Using probabilistic tracking from pure gray and white matter seeds, we found that ∼50% of the cortical surface was effectively inaccessible for long-range diffusion tracking because of dense white matter zones just beneath the infragranular layers of the cortex. Analysis of the corresponding myelin-stained sections revealed that these zones colocalized with dense and uniform sheets of axons running mostly parallel to the cortical surface, most often in sulcal regions but also in many gyral crowns. Tracer injection into the sulcal cortex demonstrated that at least some axonal fibers pass directly through these fiber systems. Current and future high-resolution dMRI studies of the human brain will need to develop methods to overcome the challenges posed by superficial white matter systems to determine long-range anatomical connections accurately.


Assuntos
Imagem de Tensor de Difusão/métodos , Macaca mulatta/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Conectoma/estatística & dados numéricos , Bases de Dados Factuais , Imagem de Tensor de Difusão/estatística & dados numéricos , Substância Cinzenta/anatomia & histologia , Humanos , Imageamento Tridimensional , Masculino , Modelos Neurológicos , Vias Neurais/anatomia & histologia
18.
Magn Reson Med ; 78(5): 1767-1780, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090658

RESUMO

PURPOSE: This study was a systematic evaluation across different and prominent diffusion MRI models to better understand the ways in which scalar metrics are influenced by experimental factors, including experimental design (diffusion-weighted imaging [DWI] sampling) and noise. METHODS: Four diffusion MRI models-diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator MRI (MAP-MRI), and neurite orientation dispersion and density imaging (NODDI)-were evaluated by comparing maps and histogram values of the scalar metrics generated using DWI datasets obtained in fixed mouse brain with different noise levels and DWI sampling complexity. Additionally, models were fit with different input parameters or constraints to examine the consequences of model fitting procedures. RESULTS: Experimental factors affected all models and metrics to varying degrees. Model complexity influenced sensitivity to DWI sampling and noise, especially for metrics reporting non-Gaussian information. DKI metrics were highly susceptible to noise and experimental design. The influence of fixed parameter selection for the NODDI model was found to be considerable, as was the impact of initial tensor fitting in the MAP-MRI model. CONCLUSION: Across DTI, DKI, MAP-MRI, and NODDI, a wide range of dependence on experimental factors was observed that elucidate principles and practical implications for advanced diffusion MRI. Magn Reson Med 78:1767-1780, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Animais , Masculino , Camundongos , Modelos Teóricos , Água
19.
Proc Natl Acad Sci U S A ; 111(46): 16574-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368179

RESUMO

Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.


Assuntos
Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Macaca mulatta/anatomia & histologia , Algoritmos , Animais , Transporte Axonal , Axônios/ultraestrutura , Água Corporal , Meios de Contraste , Difusão , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Imagem de Tensor de Difusão/estatística & dados numéricos , Gadolínio DTPA , Leucina/farmacocinética , Masculino , Modelos Neurológicos , Córtex Motor/anatomia & histologia , Lobo Occipital/anatomia & histologia , Prolina/farmacocinética , Curva ROC , Projetos de Pesquisa , Sensibilidade e Especificidade , Trítio/análise , Substância Branca/anatomia & histologia
20.
Neuroimage ; 133: 41-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26921714

RESUMO

Measures of brain morphometry derived from T1-weighted (T1W) magnetic resonance imaging (MRI) are widely used to elucidate the relation between brain structure and function. However, the computation of T1W morphometric measures can be confounded by subject-related factors such as head motion and level of hydration. A recent study reported subtle yet significant changes in brain volume from morning to evening in a large group of patient populations as well as in healthy elderly individuals. In addition, there is a growing recognition that factors such as circadian rhythm can impact MRI measures of brain function and structure. Here, we provide a comprehensive assessment of the impact of time-of-day (TOD) on widely used measures of brain morphometry in a group of 19 healthy young adults. Our results show that (a) even in a small group of healthy adult volunteers, a highly significant reduction in apparent brain volume, from morning to evening, could be detected; (b) the apparent volume of all three major tissue compartments - gray matter, white matter, and cerebrospinal fluid - were influenced by TOD, and the magnitude of the TOD effect varied across the tissue compartments; (c) measures of cortical thickness, cortical surface area, and gray matter density computed with widely used neuroimaging software suites (i.e., FreeSurfer, FSL-VBM) were all affected by TOD, while other measures, such as curvature indices and sulcal depth, were not; and (d) the effect of TOD appeared to have a greater impact on morphometric measures of the frontal and temporal lobe than on other major lobes of the brain. Our results suggest that the TOD effect is a physiological phenomenon and that controlling for the effect of TOD is crucial for proper interpretation of apparent structural differences measured with T1W morphometry.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ritmo Ultradiano/fisiologia , Feminino , Humanos , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA