Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioprocess Eng ; 24(2): 282-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32218683

RESUMO

Streptococcus mutans plays an important role in the development of dental caries in humans by synthesizing adhesive insoluble glucans from sucrose by mutansucrase activity. To explore the anti-cariogenic characteristics of rubusoside (Ru), a natural sweetener component in Rubus suavissimus S. Lee (Rosaceae), we investigated the inhibitory effect of Ru against the activity of mutansucrase and the growth of Streptococcus mutans. Ru (50 mM) showed 97% inhibitory activity against 0.1 U/mL mutansucrase of S. mutans with 500 mM sucrose. It showed competitive inhibition with a K i value of 1.1 ± 0.2 mM and IC50 of 2.3 mM. Its inhibition activity was due to hydrophobic and hydrogen bonding interactions based on molecular docking analysis. Ru inhibited the growth of S. mutans as a bacteriostatic agent, with MIC and MBC values of 6 mM and 8 mM, respectively. In addition, Ru showed synergistic anti-bacterial activity when it was combined with curcumin. Therefore, Ru is a natural anti-cariogenic agent with anti-mutansucrase activity and antimicrobial activity against S. mutans. ELECTRONIC SUPPLEMENTARY MATERIAL ESM: The online version of this article (doi: 10.1007/s12257-018-0408-0) contains supplementary material, which is available to authorized users.

2.
Polymers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890569

RESUMO

The current study aims to evaluate the effect of tamarind gum (TG) on the optical, mechanical, and drug release potential of poly(vinyl alcohol) (PVA)-based films. This involves preparing PVA-TG composite films with different concentrations of TG through a simple solvent casting method. The addition of TG has enhanced the phase separation and aggregation of PVA within the films, and it becomes greater with the increase in TG concentration. Brightfield and polarized light micrographs have revealed that aggregation is favored by forming crystalline domains at the PVA-TG interface. The interconnected network of PVA-TG aggregates influenced the swelling and drying properties of the films. Using Peleg's analysis, the mechanical behavior of films was determined by their stress relaxation profiles. The addition of TG has made no significant changes to the firmness and viscoelastic properties of films. However, long-durational relaxation times indicated that the interconnected network might break down in films with higher TG concentration, suggesting their brittleness. The controlled release of ciprofloxacin in HCl solution (0.5% (w/v)) appears to decrease with the increase in TG concentration. In fact, TG has inversely affected the impedance and altered the ionic conductivity within the films. This seems to have directly influenced the drug release from the films as the mechanism was found to be non-Fickian diffusion (based on Korsmeyer-Peepas and Peppas-Sahlin kinetic models). The antimicrobial study using Escherichia coli was carried out to evaluate the activity of the drug-loaded films. The study proves that TG can modulate the properties of PVA films and has the potential to fine-tune the controlled release of drugs from composite films.

3.
ACS Omega ; 7(34): 30125-30136, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061661

RESUMO

Oleogels (OGs) have gained a lot of interest as a delivery system for a variety of pharmaceuticals. The current study explains the development of jasmine floral wax (JFW) and wheat germ oil (WGO)-based OGs for oral drug (curcumin) delivery application. The OGs were made by dissolving JFW in WGO at 70 °C and cooling it to room temperature (25 °C). The critical gelation concentration of JFW that induces the gelation of WGO was found to be 10% (w/w). The OGs were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopic analysis, and mechanical test. XRD data indicated that JFW influences the crystallinity of the OGs. Among the prepared OGs, OG 17.5 showed higher crystallization in the series. Optical microscopic studies demonstrated the formation of fiber structures due to the entanglement of crystals whereas, polarized light micrographs suggested the formation of spherulites or clustered crystallite structures. The mechanical properties of the OGs increased linearly with the increase in the JFW concentration. Curcumin-loaded OGs were examined for their controlled release applications. In summary, the developed OGs were found to have the necessary features for modulating the oral delivery of curcumin.

4.
Food Chem ; 347: 128987, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461117

RESUMO

The present study reports the effect of sorbitan monopalmitate (SM) as a crystallization modifier on the physicochemical properties of mango butter (MB). The concentration of SM was varied in the range of 1 and 5 wt%. The addition of SM promoted the aggregation of globular MB crystals. The FTIR patterns did not show any significant changes when SM was added. XRD and DSC analyses confirmed the crystallization of MB crystals in stable ß' and ß (V) polymorphic states. However, SM also introduced imperfections in the crystal lattices of MB. Among all formulations, M2 (SM; 1% w/w) possessed a mechanically stable network structure. The crystallization rate of MB was tailored by SM in a concentration-dependent manner. The solid content was highest in M4 (SM; 5% w/w) at 10 °C and 30 °C among all the oleogels. In gist, SM in manageable quantities can be utilized for preparing custom-tailored MB-based products.


Assuntos
Manteiga/análise , Hexoses/análise , Mangifera/metabolismo , Colorimetria , Cristalização , Elasticidade , Mangifera/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Viscosidade , Difração de Raios X
5.
Gels ; 7(2)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066326

RESUMO

In the present study, we report the development of poly (vinyl alcohol) (PVA) and chitosan oligosaccharide (COS)-based novel blend films. The concentration of COS was varied between 2.5-10.0 wt% within the films. The inclusion of COS added a brown hue to the films. FTIR spectroscopy revealed that the extent of intermolecular hydrogen bonding was most prominent in the film that contained 5.0 wt% of COS. The diffractograms showed that COS altered the degree of crystallinity of the films in a composition-dependent manner. As evident from the thermal analysis, COS content profoundly impacted the evaporation of water molecules from the composite films. Stress relaxation studies demonstrated that the blend films exhibited more mechanical stability as compared to the control film. The impedance profiles indicated the capacitive-dominant behavior of the prepared films. Ciprofloxacin HCl-loaded films showed excellent antimicrobial activity against Escherichia coli and Bacillus cereus. The prepared films were observed to be biocompatible. Hence, the prepared PVA/COS-based blend films may be explored for drug delivery applications.

6.
Food Chem ; 323: 126834, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32334312

RESUMO

Emulsifiers act as Fat crystal modifiers and can modulate the crystallization process of fats. In this study, we have reported the effect of polyglycerol polyricinoleate (PGPR) on the physicochemical properties of an underutilized vegetable fat "mango butter" (MB). MB-PGPR based formulations were prepared by heat-cool method. Microscopic studies showed that PGPR resulted in the formation of globular MB crystals. XRD and thermal studies conjointly suggested that the MB crystals were predominantly crystallized as ß-polymorph. However, PGPR induced imperfections within the MB crystals. FTIR spectroscopy revealed that PGPR considerably varied the local environment of the MB crystals. PGPR also altered the nucleation time and crystallization rate of the MB crystal formation. The MB formulation that contained 2.5% (w/w) PGPR was found to have good mechanical stability. In gist, the addition of PGPR (as a crystal modifier) can help us to influence the crystal behavior and physicochemical properties of the MB fat.

7.
J Med Device ; 14(1): 011104, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32328211

RESUMO

Wireless controllers have found its application in the supervision of the patients in the hospitals. It is not only a valid issue for the developing countries but also for the developed countries. For this reason, scientists are working on the advancement of medical devices that are capable of decreasing the workload of health caregivers. In this study, the development of an iontophoretic drug delivery device that could be controlled using a mobile is described. For the purpose, hardware and a software module were developed. The hardware module consisted of a two-channel voltage-controlled constant current sources that were used for driving the iontophoretic device. A mobile app was developed to control the two-channel iontophoretic device and to monitor the loose lead of the active and the passive patches. In the case of detection of the loose lead, the specific iontophoretic channel was stopped. Further, the audio-visual indicator was developed for the detection of the detachment of the patches (loose lead). The device was tested in vitro by performing the drug release study using drug-loaded emulsion gels that were formulated.

8.
Gels ; 6(4)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238509

RESUMO

In this work, oleogels of cocoa butter (CB), rice bran oil (RBO), and graphene oxide (GO) were prepared. The prepared oleogels were subjected to various characterization techniques such as bright-field microscopy, X-ray diffraction (XRD), crystallization kinetics, differential scanning calorimetry (DSC), and mechanical studies. The influence of increasing GO content on the in vitro drug release and ex vivo corneal permeation of the model drug (ciprofloxacin HCl-CPH) from the oleogels was also investigated. Bright-field micrographs showed that increment in GO content reduced the size of the globular particles of CB. XRD analysis revealed that CB was crystallized in its ß' and ß polymorphic forms in the oleogels, which was in agreement with thermal studies. The mechanical characterization demonstrated that the presence of GO improved the elastic nature and stress-bearing properties of the oleogels. Moreover, GO altered the crystallization kinetics of CB in the oleogels in a composition-dependent manner. The in vitro release of CPH from the oleogels occurred through either Fickian diffusion or fat network relaxation or a combination thereof. Furthermore, the inclusion of GO enhanced the ex vivo permeation of CPH molecules across the caprine cornea. Hence, we concluded that the prepared oleogels could be explored as potential delivery systems for ophthalmic applications.

9.
Int J Biol Macromol ; 164: 1608-1620, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763397

RESUMO

In this study, we developed tamarind gum (TG) and rice bran oil (RBO)-based emulgels. The control formulation (TR0), did not contain RBO. The emulgels were named as TR1, TR2, TR3, and TR4, which contained 5% (w/w), 10% (w/w), 15% (w/w), and 20% (w/w/) of RBO, respectively. The microscopic studies showed that the emulgels were biphasic in nature. FTIR spectroscopy revealed the reduction in the hydrogen bonding with an increase in the RBO content. Impedance profiles suggested that the resistive component of the emulgels was increased as the RBO content was increased. The thermal analysis suggested that the addition of RBO reduced the water holding capacity of the emulgels. Stress relaxation studies revealed that the fluidic component was considerably higher in TG/RBO-based emulgels as compared to TR0. In vitro release study of the model drug (ciprofloxacin HCl; a hydrochloride salt of ciprofloxacin) suggested a significantly lower release from the emulgel matrices (TR1-TR4) in comparison to TR0. However, ex vivo corneal permeation of the drug increased with an increase in the RBO content. Since the emulgels were able to improve the corneal permeation of the model drug, the emulgels can be explored to deliver drugs to the internal structures of the eye.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/química , Óleos de Plantas/química , Óleo de Farelo de Arroz/química , Tamarindus/química , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Olho/efeitos dos fármacos , Ligação de Hidrogênio
10.
Curr Pharm Des ; 25(11): 1172-1186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465278

RESUMO

BACKGROUND: With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient's body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. METHODS: Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. RESULTS: Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. CONCLUSION: In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.


Assuntos
Carragenina/química , Sistemas de Liberação de Medicamentos , Polímeros , Rodófitas/química , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA