Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998983

RESUMO

High-spin defects (color centers) in wide-gap semiconductors are considered as a basis for the implementation of quantum technologies due to the unique combination of their spin, optical, charge, and coherent properties. A silicon carbide (SiC) crystal can act as a matrix for a wide variety of optically active vacancy-type defects, which manifest themselves as single-photon sources or spin qubits. Among the defects, the nitrogen-vacancy centers (NV) are of particular importance. This paper is devoted to the application of the photoinduced electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques at a high-frequency range (94 GHz) to obtain unique information about the nature and properties of NV defects in SiC crystal of the hexagonal 4H and 6H polytypes. Selective excitation by microwave and radio frequency pulses makes it possible to determine the microscopic structure of the color center, the zero-field splitting constant (D = 1.2-1.3 GHz), the phase coherence time (T2), and the values of hyperfine (≈1.1 MHz) and quadrupole (Cq ≈ 2.45 MHz) interactions and to define the isotropic (a = -1.2 MHz) and anisotropic (b = 10-20 kHz) contributions of the electron-nuclear interaction. The obtained data are essential for the implementation of the NV defects in SiC as quantum registers, enabling the optical initialization of the electron spin to establish spin-photon interfaces. Moreover, the combination of optical, microwave, and radio frequency resonant effects on spin centers within a SiC crystal shows the potential for employing pulse EPR and ENDOR sequences to implement protocols for quantum computing algorithms and gates.

2.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064826

RESUMO

In the past, polyacrylamide hydrogel was a popular choice for breast augmentation filler, and many women underwent mammoplasty with this gel. However, due to frequent complications, the use of polyacrylamide hydrogel in mammoplasty has been banned. Despite this ban, patients experiencing complications still seek medical treatment. The aim of this study was to investigate the fate of the polymer over a defined implantation period. Biopsies of breast implants were obtained from patients with 23 and 27 years of post-mammoplasty. These biopsies were meticulously purified from biological impurities and subjected to analysis using IR spectrometry, liquid chromatography-mass spectrometry, gas chromatography, and differential scanning calorimetry. The findings revealed the presence of polyacrylamide hydrogel residues, along with degradation products, within the infected material. Notably, the low-molecular-weight degradation products revealed via gas chromatography are aggressive and toxic substances capable of inducing chronic inflammation. This study sheds light on the long-term consequences of polyacrylamide hydrogel implantation, highlighting the persistence of harmful degradation products and their role in exacerbating patient complications.


Assuntos
Resinas Acrílicas , Inflamação , Humanos , Resinas Acrílicas/química , Feminino , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Implantes de Mama/efeitos adversos , Adulto , Mamoplastia , Pessoa de Meia-Idade
3.
Phys Chem Chem Phys ; 24(39): 24514-24523, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193719

RESUMO

The heat-induced crystallization of amorphous calcium phosphate (ACP) is an intriguing process not yet well comprehended. This is because most of the works on this topic are based on ex situ studies where the materials are characterized after the heat and cooldown cycles, thus missing transient structural changes. Here, we used time-resolved energy dispersive X-ray diffraction and infrared spectroscopy to study, for the first time, the thermal crystallization of ACP in situ. The thermal crystallization of two kinds of citrate-stabilized carbonated ACP was studied, as they are promising materials for the preparation of advanced bioceramics. The behavior of these samples was compared to that of two citrate-free ACPs, either doped or non-doped with carbonate ions. Our results evinced that several phenomena occur during ACP thermal annealing. Before crystallization, all ACP samples undergo a decrease in the short-range order process, followed by several internal reorganizations. We have assessed that differently from carbonate-free ACP, carbonated ACPs with and without citrate directly crystallize into a biomimetic poorly crystalline carbonated hydroxyapatite. Citrate-stabilized ACPs in comparison to citrate-free ACPs have a faster hydroxyapatite formation kinetics, which is due to their higher specific surface area. This work reveals the necessity and the potentialities of using in situ techniques to effectively probe complex processes such as the heat-induced crystallization of ACPs.


Assuntos
Fosfatos de Cálcio , Durapatita , Fosfatos de Cálcio/química , Cristalização , Durapatita/química , Íons
4.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144818

RESUMO

Sr2+-substituted ß-tricalcium phosphate (ß-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that ß-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial ß-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the ß-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.


Assuntos
Solução Salina , Estrôncio , Apatitas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Humanos , Íons , Pós , Estrôncio/química , Estrôncio/farmacologia , Difração de Raios X
5.
J Mater Sci Mater Med ; 32(9): 99, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406523

RESUMO

For bone replacement materials, osteoconductive, osteoinductive, and osteogenic properties are desired. The bacterial resistance and the need for new antibacterial strategies stand among the most challenging tasks of the modern medicine. In this work, brushite cements based on powders of Zinc (Zn) (1.4 wt%) substituted tricalcium phosphate (ß-TCP) and non-substituted ß-TCP were prepared and investigated. Their initial and final phase composition, time of setting, morphology, pH evolution, and compressive strength are reported. After soaking for 60 days in physiological solution, the cements transformed into a mixture of brushite and hydroxyapatite. Antibacterial activity of the cements against Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa bacteria strains was attested. The absence of cytotoxicity of cements was proved for murine fibroblast NCTC L929 cells. Moreover, the cell viability on the ß-TCP cement containing Zn2+ ions was 10% higher compared to the ß-TCP cement without zinc. The developed cements are perspective for applications in orthopedics and traumatology.


Assuntos
Antibacterianos/farmacologia , Cimentos Ósseos , Substitutos Ósseos , Fosfatos de Cálcio/química , Zinco/química , Animais , Sobrevivência Celular , Força Compressiva , Durapatita , Espectroscopia de Ressonância de Spin Eletrônica , Enterococcus faecium , Escherichia coli , Concentração de Íons de Hidrogênio , Íons , Teste de Materiais , Camundongos , Testes de Sensibilidade Microbiana , Ortopedia , Pós , Pseudomonas aeruginosa , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Appl Surf Sci ; 5702021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34594060

RESUMO

Titanium and its alloys are the most used biomaterials for orthopedic and dental applications. However, up to 10% of these medical devices still fail, mostly due to implant loosening and suboptimal integration at the implant site. The biomaterial surface plays a critical role in promoting osseointegration, which can reduce the risk of device failure. In this study, we propose a novel surface modification on titanium to improve osteogenic differentiation by depositing manganese-containing bioactive glass (BG) on TiO2 nanotube arrays. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, contact angle goniometry, and X-ray photoelectron spectroscopy. Cell toxicity, viability, adhesion, and proliferation of adipose-derived stem cells on the surfaces were investigated up to 7 days. To evaluate the osteogenic properties of the surfaces, alkaline phosphatase activity, total protein, osteocalcin expression, and calcium deposition were quantified up to 28 days. The results indicate that TiO2 nanotube arrays modified with BG promote cell growth and induce increased osteocalcin and calcium contents when compared to unmodified TiO2 nanotube arrays. The deposition of manganese-containing bioactive glass onto TiO2 nanotubes demonstrates the ability to enhance osteogenic activity on titanium, showing great potential for use in orthopedic and dental implants.

7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360816

RESUMO

Hypothalamic dysfunction is an initial event following diet-induced obesity, primarily involving areas regulating energy balance such as arcuate nucleus (Arc) and median eminence (ME). To gain insights into the early hypothalamic diet-induced alterations, adult CD1 mice fed a high-fat diet (HFD) for 6 weeks were studied and compared with normo-fed controls. Transmission and scanning electron microscopy and histological staining were employed for morphological studies of the ME, while Raman spectroscopy was applied for the biochemical analysis of the Arc-ME complex. In HFD mice, ME ß2-tanycytes, glial cells dedicated to blood-liquor crosstalk, exhibited remarkable ultrastructural anomalies, including altered alignment, reduced junctions, degenerating organelles, and higher content of lipid droplets, lysosomes, and autophagosomes. Degenerating tanycytes also displayed an electron transparent cytoplasm filled with numerous vesicles, and they were surrounded by dilated extracellular spaces extending up to the subependymal layer. Consistently, Raman spectroscopy analysis of the Arc-ME complex revealed higher glycogen, collagen, and lipid bands in HFD mice compared with controls, and there was also a higher band corresponding to the cyanide group in the former compared to the last. Collectively, these data show that ME ß2-tanycytes exhibit early structural and chemical alterations due to HFD and reveal for the first-time hypothalamic cyanide presence following high dietary lipids consumption, which is a novel aspect with potential implications in the field of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Eminência Mediana/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/patologia , Metabolismo Energético , Masculino , Eminência Mediana/patologia , Camundongos , Obesidade/patologia
8.
Cell Biol Toxicol ; 36(6): 537-551, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32377851

RESUMO

Substituting small molecule drugs with abundant and easily affordable ions may have positive effects on the way countless disease treatments are approached. The interest in strontium cation in bone therapies soared in the wake of the success of strontium ranelate in the treatment of osteoporosis. A new method for producing thin strontium-containing hydroxyapatite (Sr-HA, Ca9Sr(PO4)6(OH)2) films as coatings that render bioinert titanium implant bioactive is reported here. The method is based on the combination of a mechanochemical synthesis of Sr-HA targets and their deposition in form of thin films on top of titanium with the use of laser ablation at low pressure. The films were 1-2 µm in thickness and their formation was studied at different temperatures, including 25, 300, and 500 °C. Highly crystalline Sr-HA target transformed during pulsed laser deposition to a fully amorphous film, whose degree of long-range order recovered with temperature. Particle edges became somewhat sharper and surface roughness moderately increased with temperature, but the (Ca+Sr)/P atomic ratio, which increased 1.5 times during the film formation, remained approximately constant at different temperatures. Despite the mostly amorphous structure of the coatings, their affinity for capturing atmospheric carbon dioxide and accommodating it as carbonate ions that replace both phosphates and hydroxyls of HA was confirmed in an X-ray photoelectron spectroscopic analysis. As the film deposition temperature increased, the lattice voids got reduced in concentration and the structure gradually "closed," becoming more compact and entailing a linear increase in microhardness with temperature, by 0.03 GPa/°C for the entire 25-500 °C range. Biocompatibility and bioactivity of Sr-HA thin films deposited on titanium were confirmed in an interaction with dental pulp stem cells, suggesting that these coatings, regardless of the processing temperature, may be viable candidates for the surface components of metallic bone implants.


Assuntos
Materiais Biocompatíveis , Hidroxiapatitas/farmacologia , Lasers , Osteoblastos/efeitos dos fármacos , Próteses e Implantes , Células-Tronco/efeitos dos fármacos , Estrôncio/farmacologia , Temperatura , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Humanos , Hidroxiapatitas/síntese química , Hidroxiapatitas/toxicidade , Estrutura Molecular , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Desenho de Prótese , Células-Tronco/metabolismo , Estrôncio/química , Estrôncio/toxicidade , Propriedades de Superfície
9.
Anal Chem ; 90(1): 847-854, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227640

RESUMO

Primary hyperparathyroidism is an endocrine disorder characterized by autonomous production of parathyroid hormone. Patients with the symptomatic disease should be referred for parathyroidectomy. However, the distinction between the pathological condition and the benign one is very challenging in the surgical setting; therefore, accurate recognition is important to ensure success during minimally invasive surgery. At present, all intraoperative techniques significantly increase surgical time and, consequently, cost. In this proof-of-concept study, Raman microscopy was used to differentiate between healthy parathyroid tissue and parathyroid adenoma from 18 patients. The data showed different spectroscopic features for the two main tissue types of healthy and adenoma. Moreover, the parathyroid adenoma subtypes (chief cells and oxyphil cells) were characterized by their own Raman spectra. The partial least-squares discriminant analysis (PLS-DA) model built to discriminate healthy from adenomatous parathyroid tissue was able to correctly classify all samples in the calibration and validation data sets, providing 100% prediction accuracy. The PLS-DA model built to discriminate chief cell adenoma from oxyphil cell adenoma allowed us to correctly classify >99% of the spectra during calibration and cross-validation and to correctly predict 100% of oxyphil and 99.8% of chief cells in the external validation data set. The results clearly demonstrate the great potential of Raman spectroscopy. The final goal would be development of a Raman portable fiber probe device for intraoperative optical biopsy, both to improve the surgical success rate and reduce surgical cost.


Assuntos
Glândulas Paratireoides/diagnóstico por imagem , Neoplasias das Paratireoides/diagnóstico , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Glândulas Paratireoides/patologia , Neoplasias das Paratireoides/classificação , Análise Espectral Raman
10.
Front Bioeng Biotechnol ; 12: 1347811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665815

RESUMO

Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 µm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.

11.
Polymers (Basel) ; 16(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276695

RESUMO

This article presents materials that highlight the bioengineering potential of polymeric systems of natural origin based on biodegradable polysaccharides, with applications in creating modern products for localized wound healing. Exploring the unique biological and physicochemical properties of polysaccharides offers a promising avenue for the atraumatic, controlled restoration of damaged tissues in extensive wounds. The study focused on alginate, pectin, and a hydrogel composed of their mixture in a 1:1 ratio. Atomic force microscopy data revealed that the two-component gel exhibits greater cohesion and is characterized by the presence of filament-like elements. The dynamic light scattering method indicated that this structural change results in a reduction in the damping of acoustic modes in the gel mixture compared to the component gels. Raman spectroscopy research on these gels revealed the emergence of new bonds between the components' molecules, contributing to the observed effects. The biocompatibility of the gels was evaluated using dental pulp stem cells, demonstrating that all the gels exhibit biocompatibility.

12.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535643

RESUMO

Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known for their antibacterial properties and potential in bone metabolism for regenerative medicine. In this study, we synthesized B-containing tricalcium phosphate (0.3B-TCP) with 1.1 wt.% B content via precipitation from aqueous solutions and sintering at 1100 °C. X-ray diffraction confirmed the ceramic's primary crystalline phase as ß-TCP, with B evenly distributed according to energy-dispersive spectroscopy data. Electron paramagnetic resonance (EPR) data verified stable paramagnetic borate anions, indicating successful BO33- substitution for phosphate groups. The microstructural properties of 0.3B-TCP ceramic were assessed before and after soaking in a saline solution. Its bending strength was approximately 30 MPa, and its porosity was about 33%. 0.3B-TCP ceramic demonstrated significant antimicrobial efficacy against various bacterial strains and a fungus. Cytotoxicity evaluation using equine adipose tissue-derived mesenchymal stem cells and osteogenic differentiation assessment were conducted. The combination of antibacterial efficacy and good cytocompatibility suggests 0.3B-TCP ceramic as a promising bone substitute material.

13.
Biomimetics (Basel) ; 9(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667262

RESUMO

ß-tricalcium phosphate (ß-TCP) is a promising material in regenerative traumatology for the creation of bone implants. Previously, it was established that doping the structure with certain cations can reduce the growth of bacterial activity. Recently, much attention has been paid to co-doped ß-TCP, that is explained by their ability, on the one hand, to reduce cytotoxicity for cells of the human organism, on the other hand, to achieve a successful antibacterial effect. Sr, Cu-co-doped solid solutions of the composition Ca9.5-xSrxCu(PO4)7 was obtained by the method of solid-phase reactions. The Rietveld method of structural refinement revealed the presence of Sr2+ ions in four crystal sites: M1, M2, M3, and M4. The M5 site is completely occupied by Cu2+. Isomorphic substitution of Ca2+ → (Sr2+and Cu2+) expands the concentration limits of the existence of the solid solution with the ß-TCP structure. No additional phases were formed up to x = 4.5 in Ca9.5-xSrxCu(PO4)7. Biocompatibility tests were performed on cell lines of human bone marrow mesenchymal stromal cells (hMSC), human fibroblasts (MRC-5) and osteoblasts (U-2OS). It was demonstrated that cytotoxicity exhibited a concentration dependence, along with an increase in osteogenesis and cell proliferation. Ca9.5-xSrxCu(PO4)7 powders showed significant inhibitory activity against pathogenic strains Escherichia coli and Staphylococcus aureus. Piezoelectric properties of Ca9.5-xSrxCu(PO4)7 were investigated. Possible ways to achieve high piezoelectric response are discussed. The combination of bioactive properties of Ca9.5-xSrxCu(PO4)7 renders them multifunctional materials suitable for bone substitutes.

14.
J Funct Biomater ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233360

RESUMO

Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.

15.
Materials (Basel) ; 16(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049124

RESUMO

Alginate is a natural polymer widely applied in materials science, medicine, and biotechnology. Its ability to bind metal ions in order to form insoluble gels has been comprehensively used to create capsules for cell technology, drug delivery, biomedical materials, etc. To modify and predict the properties of cross-linked alginate, knowledge about the mechanism of alginate binding with metal ions and the properties of its gels is necessary. This article presents the results obtained by proton Nuclear Magnetic Resonance Spectroscopy for alginate containing calcium and strontium (alkaline earth metal diamagnetic) ions and by Electron Paramagnetic Resonance Spectroscopy for alginate with copper (Cu) and manganese (Mn) (transition metal paramagnetic) ions. It was found that in the case of calcium (Ca) and Mn ions, their concentration does not affect their distribution in the alginate structure and the cross-linking density. In the case of strontium (Sr) and Cu ions, their number affects the number of binding sites and, accordingly, the cross-linking density. Thus, the cross-linking of alginate depends mainly on the characteristics of specific cations, while the nature of the bond (ionic or coordination type) is less important.

16.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629823

RESUMO

Surgical operations on the peritoneum are often associated with the formation of adhesions, which can interfere with the normal functioning of the internal organs. The effectiveness of existing barrier materials is relatively low. In this work, the effectiveness of soluble alginate-polyvinylpyrrolidone (PVP-Alg) and non-soluble Ca ion cross-linked (PVP-Alg-Ca) films in preventing these adhesions was evaluated. Experiments in vivo were performed on mice via mechanical injury to the adjacent peritoneum wall and the caecum, followed by the application of PVP-Alg or PVP-Alg-Ca films to the injured area. After 7 days, samples from the peritoneal wall and caecum were analyzed using histology and quantitative polymerase chain reaction (qPCR). It was shown that the expression of genes responsible for adhesion formation in the caecum in the PVP-Alg group was comparable to that in the control group, while in the PVP-Alg-Ca group, it increased by 5-10 times. These results were consistent with the histology: in the PVP-Alg group, the adhesions did not form, while in the PVP-Alg-Ca group, the adhesions corresponded to five points on the adhesion scale. Therefore, the formation of intraperitoneal adhesions can be effectively prevented by non-crosslinked, biodegradable PVP-Alg films, whereas cross-linked, not biodegradable PVP-Alg-Ca films cause inflammation and adhesion formation.

17.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006168

RESUMO

The synthesis of biocompatible and bioresorbable composite materials, such as a "polymer matrix-mineral constituent," stimulating the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine and materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study the composite films' properties. The application of EPR in two frequency ranges allowed us to derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H NMR showed the presence of two signals at 4.7 ppm and -2.15 ppm, attributed to "free" water and hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H and 31P showed that the relaxation decays were multicomponent processes that can be described by three components of the transverse relaxation times. The obtained results demonstrated that the applied magnetic resonance methods can be used for the quality control of PVP-HA composites and, potentially, for the development of analytical tools to follow the processes of sample treatment, resorption, and degradation.

18.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676290

RESUMO

Magnesium alloys are considered one of the most promising materials for biodegradable trauma implants because they promote bone healing and exhibit adequate mechanical strength during their biodegradation in relation to the bone healing process. Surface modification of biodegradable magnesium alloys is an important research field that is analyzed in many publications as the biodegradation due to the corrosion process and the interface with human tissue is improved. The aim of the current preliminary study is to develop a polymeric-based composite coating on biodegradable magnesium alloys by the solvent evaporation method to reduce the biodegradation rate much more than in the case of simple polymeric coatings by involving some bioactive filler in the form of particles consisting of hydroxyapatite and magnesium. Various techniques such as SEM coupled with EDS, FTIR, and RAMAN spectroscopy, and contact angle were used for the structural and morphological characterization of the coatings. In addition, thermogravimetric analysis (TGA) was used to study the effect of filler particles on polymer thermostability. In vitro cytotoxicity assays were performed on MG-63 cells (human osteosarcomas). The experimental analysis highlights the positive effect of magnesium and hydroxyapatite particles as filler for cellulose acetate when they are used alone from biocompatibility and surface analysis points of view, and it is not recommended to use both types of particles (hydroxyapatite and magnesium) as hybrid filling. In future studies focused on implantation testing, we will use only CA-based composite coatings with one filler on magnesium alloys because these composite coatings have shown better results from the in vitro testing point of view for future potential orthopedic biodegradable implants for trauma.

19.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177252

RESUMO

A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.

20.
Materials (Basel) ; 16(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37374661

RESUMO

An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30-190 µm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA