Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 103(1): 957-1024, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951481

RESUMO

Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.


Assuntos
Peroxissomos , Animais , Humanos , Camundongos
2.
Trends Biochem Sci ; 45(9): 794-805, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505636

RESUMO

Viruses rely on the host cell translation machinery for efficient synthesis of their own proteins. Emerging evidence highlights different roles for host transfer RNAs (tRNAs) in the process of virus replication. For instance, different RNA viruses manipulate host tRNA pools to favor viral protein translation. Interestingly, specific host tRNAs are used as reverse transcription primers and are packaged into retroviral virions. Recent data also demonstrate the formation of tRNA-derived fragments (tRFs) upon infection to facilitate viral replication. Here, we comprehensively discuss how RNA viruses exploit distinct aspects of the host tRNA biology for their benefit. In light of the recent advances in the field, we propose that host tRNA-related pathways and mechanisms represent promising cellular targets for the development of novel antiviral strategies.


Assuntos
Infecções por Vírus de RNA , Vírus de RNA , Humanos , Vírus de RNA/genética , RNA de Transferência/genética
3.
Med Res Rev ; 44(2): 497-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37602483

RESUMO

Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.


Assuntos
Artrite Reumatoide , Flavonoides , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Inflamação
4.
Cell Commun Signal ; 22(1): 65, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267954

RESUMO

Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.


Assuntos
Processamento de Proteína Pós-Traducional , Viroses , Humanos , Proteína Fosfatase 1 , Fosforilação , Fatores de Transcrição , Holoenzimas
5.
Med Res Rev ; 43(6): 1878-1945, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37147865

RESUMO

One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.


Assuntos
MicroRNAs , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Flavonoides/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias/tratamento farmacológico , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Metástase Neoplásica
6.
Crit Rev Food Sci Nutr ; 62(12): 3137-3207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33427491

RESUMO

Type 2 diabetes (T2D) is one of the most prevalent metabolic diseases worldwide and is characterized by increased postprandial hyperglycemia (PPHG). α-Amylase and α-glucosidase inhibitors have been shown to slow the release of glucose from starch and oligosaccharides, resulting in a delay of glucose absorption and a reduction in postprandial blood glucose levels. Since current α-glucosidase inhibitors used in the management of T2D, such as acarbose, have been associated to strong gastrointestinal side effects, the search for novel and safer drugs is considered a hot topic of research. Flavonoids are phenolic compounds widely distributed in the Plant Kingdom and important components of the human diet. These compounds have shown promising antidiabetic activities, including the inhibition of α-amylase and α-glucosidase. The aim of this review is to provide an overview on the scientific literature concerning the structure-activity relationship of flavonoids in inhibiting α-amylase and α-glucosidase, including their type of inhibition and experimental procedures applied. For this purpose, a total of 500 compounds is covered in this review. Available data may be considered of high value for the design and development of novel flavonoid derivatives with effective and potent inhibitory activity against those carbohydrate-hydrolyzing enzymes, to be possibly used as safer alternatives for the regulation of PPHG in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , alfa-Amilases , alfa-Glucosidases/metabolismo
7.
Crit Rev Food Sci Nutr ; 62(15): 4095-4151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33554619

RESUMO

Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.


Assuntos
Diabetes Mellitus Tipo 2 , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores Enzimáticos/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Hipoglicemiantes/química , Monoéster Fosfórico Hidrolases/uso terapêutico , Relação Estrutura-Atividade
8.
Arch Toxicol ; 96(6): 1551-1571, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35296919

RESUMO

Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.


Assuntos
Mucosa Intestinal , Nanopartículas Metálicas , Prata , Citocinas/metabolismo , Humanos , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Prata/efeitos adversos , Prata/química
9.
J Dairy Sci ; 105(12): 9496-9508, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207182

RESUMO

Cheese whey addition to milk is a type of fraud with high prevalence and severe economic effects, resulting in low yield for dairy products, nutritional reduction of milk and milk-derived products, and even some safety concerns. Nevertheless, methods to detect fraudulent addition of cheese whey to milk are expensive and time consuming, and are thus ineffective as screening methods. The Fourier-transform infrared (FTIR) spectroscopy technique is a promising alternative to identify this type of fraud because a large number of data are generated, and useful information might be extracted to be used by machine learning models. The objective of this work was to evaluate the use of FTIR with machine learning methods, such as classification tree and multilayer perceptron neural networks to detect the addition of cheese whey to milk. A total of 520 samples of raw milk were added with cheese whey in concentrations of 1, 2, 5, 10, 15, 20, 25, and 30%; and 65 samples were used as control. The samples were stored at 7, 20, and 30°C for 0, 24, 48, 72, and 168 h, and analyzed using FTIR equipment. Complementary results of 520 samples of authentic raw milk were used. Selected components (fat, protein, casein, lactose, total solids, and solids nonfat) and freezing point (°C) were predicted using FTIR and then used as input features for the machine learning algorithms. Performance metrics included accuracy as high as 96.2% for CART (classification and regression trees) and 97.8% for multilayer perceptron neural networks, with precision, sensitivity, and specificity above 95% for both methods. The use of milk composition and freezing point predicted using FTIR, associated with machine learning techniques, was highly efficient to differentiate authentic milk from samples added with cheese whey. The results indicate that this is a potential method to be used as a high-performance screening process to detected milk adulterated with cheese whey in milk quality laboratories.


Assuntos
Queijo , Animais , Leite/química , Soro do Leite/química , Proteínas do Soro do Leite/química , Aprendizado de Máquina
10.
Molecules ; 27(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268802

RESUMO

Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, ß-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.


Assuntos
Solanum lycopersicum
11.
Pharmacol Res ; 169: 105604, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845125

RESUMO

Diabetes mellitus is one of the biggest health emergencies of the 21st century worldwide, characterized by deficiency in insulin secretion and/or action, leading to hyperglycemia. Despite the currently available antidiabetic therapeutic options, 4.2 million people died in 2019 due to diabetes. Thus, new effective interventions are required. Polyphenols are plant secondary metabolites and have been recognized for their vast number of biological activities, including potential antidiabetic effects. However, the poor bioavailability and high metabolization of polyphenols restrict their biological effects in vivo. Nanotechnology is a promising area of research to improve the therapeutic effect of several compounds. Therefore, this review provides an overview of the literature about the utility of nano-based drug delivery systems as vehicles of polyphenols in diabetes treatment. It was possible to conclude that, in general, nano-based drug delivery systems can potentiate the beneficial antidiabetic properties of polyphenols, when compared with the free compounds, opening a new field of research in diabetology.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Humanos , Hipoglicemiantes/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem
12.
Traffic ; 19(3): 229-242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29364559

RESUMO

Peroxisomes are dynamic organelles which fulfil essential roles in lipid and ROS metabolism. Peroxisome movement and positioning allows interaction with other organelles and is crucial for their cellular function. In mammalian cells, such movement is microtubule-dependent and mediated by kinesin and dynein motors. The mechanisms of motor recruitment to peroxisomes are largely unknown, as well as the role this plays in peroxisome membrane dynamics and proliferation. Here, using a combination of microscopy, live-cell imaging analysis and mathematical modelling, we identify a role for Mitochondrial Rho GTPase 1 (MIRO1) as an adaptor for microtubule-dependent peroxisome motility in mammalian cells. We show that MIRO1 is targeted to peroxisomes and alters their distribution and motility. Using a peroxisome-targeted MIRO1 fusion protein, we demonstrate that MIRO1-mediated pulling forces contribute to peroxisome membrane elongation and proliferation in cellular models of peroxisome disease. Our findings reveal a molecular mechanism for establishing peroxisome-motor protein associations in mammalian cells and provide new insights into peroxisome membrane dynamics in health and disease.


Assuntos
Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Membranas Intracelulares/ultraestrutura , Camundongos , Microtúbulos/metabolismo , Biogênese de Organelas , Peroxissomos/ultraestrutura , Transporte Proteico , Proteínas rho de Ligação ao GTP/genética
13.
J Nat Prod ; 83(10): 3131-3140, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33006891

RESUMO

Several epidemiological studies indicate that neutrophils, under hyperglycemic conditions, are involved in the perpetuation of the inflammatory status, a characteristic of diabetes mellitus, leading to the production of prodigious quantities of reactive species and the release of neutrophil extracellular traps (NETs). Accordingly, our aim was to study the ability of a panel of 25 structurally related chalcones to modulate human neutrophil oxidative burst and the production of NETs under physiological and high glucose conditions. In general, all chalcones presented similar effects under physiological and high glucose conditions. 2',4-Dihydroxy-3-methoxychalcone (3), here studied for the first time, was the most active (IC50 ≤ 5 µM) on the inhibition of neutrophil oxidative burst, showing the importance of the presence of hydroxy substituents at the C-2' and C-4 positions of the A and B rings, respectively, and a 3-methoxy substituent at B ring of the chalcone scaffold. In the present experimental conditions, NETs release only occurred under high glucose levels. The pentahydroxylated chalcone 1 was the only one that was able to modulate the NETs release. This study provided important considerations about the chalcones' scaffold and their modulatory effect on human neutrophil activities at physiological and high glucose conditions, evidencing their potential use as complementary antidiabetic agents.


Assuntos
Chalconas/farmacologia , Glucose/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Explosão Respiratória/efeitos dos fármacos , Adolescente , Adulto , Idoso , Sobrevivência Celular/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Hipoglicemiantes/farmacologia , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Adulto Jovem
14.
J Nat Prod ; 83(5): 1541-1552, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32364726

RESUMO

Liver fructose 1,6-bisphosphatase (FBPase) is a recognized regulatory enzyme of the gluconeogenesis pathway, which has emerged as a valid target to control gluconeogenesis-mediated overproduction of glucose. As such, the management of diabetes with FBPase inhibitors represents a potential alternative for the currently used antidiabetic agents. In this study, the FBPase inhibition of a panel of 55 structurally related flavonoids was tested, through a microanalysis screening system. Then, a subset of seven active inhibitors and their close chemical relatives were further evaluated by molecular dynamics (MD) simulations using a linear interaction energy (LIE) approach. The results obtained showed that D14 (herbacetin) was the most potent inhibitor, suggesting that the presence of -OH groups at the C-3, C-4', C-5, C-7, and C-8 positions, as well as the double bond between C-2 and C-3 and the 4-oxo function at the pyrone ring, are favorable for the intended effect. Furthermore, D14 (herbacetin) is stabilized by a strong interaction with the Glu30 side chain and the Thr24 backbone of FBPase. This is the first investigation studying the in vitro inhibitory effect of a panel of flavonoids against human liver FBPase, thus representing a potentially important step for the search and design of novel inhibitors of this enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/metabolismo , Frutose-Bifosfatase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Flavonoides/química , Frutose/metabolismo , Frutose-Bifosfatase/metabolismo , Humanos , Hipoglicemiantes/química , Fígado/metabolismo , Estrutura Molecular
15.
Eur Arch Otorhinolaryngol ; 277(3): 955-956, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897719

RESUMO

We appreciate the opportunity to comment the observations on our paper entitled "Score risk scale as a prognostic factor after sudden sensorineural hearing loss", by Capuano et al. This letter highlights several important points, including the role of hyperbaric oxygen therapy and the possible association between patent foramen ovale and sudden sensorineural hearing loss (SSHL). Further research is needed to strengthen the association between cardiovascular risk and SSHL. We thank the authors for their insights into our paper and for adding their experience and observations on the potential role of cardiovascular risk in the etiology of SSHL.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Oxigenoterapia Hiperbárica , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Súbita/diagnóstico , Perda Auditiva Súbita/etiologia , Perda Auditiva Súbita/terapia , Humanos , Prognóstico
16.
J Cell Sci ; 130(9): 1675-1687, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325759

RESUMO

Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-terminus that anchors them to the membranes of organelles where they mediate critical cellular processes. Accordingly, mutations in genes encoding TA proteins have been identified in a number of severe inherited disorders. Despite the importance of correctly targeting a TA protein to its appropriate membrane, the mechanisms and signals involved are not fully understood. In this study, we identify additional peroxisomal TA proteins, discover more proteins that are present on multiple organelles, and reveal that a combination of TMD hydrophobicity and tail charge determines targeting to distinct organelle locations in mammals. Specifically, an increase in tail charge can override a hydrophobic TMD signal and re-direct a protein from the ER to peroxisomes or mitochondria and vice versa. We show that subtle changes in those parameters can shift TA proteins between organelles, explaining why peroxisomes and mitochondria have many of the same TA proteins. This enabled us to associate characteristic physicochemical parameters in TA proteins with particular organelle groups. Using this classification allowed successful prediction of the location of uncharacterized TA proteins for the first time.


Assuntos
Compartimento Celular , Mamíferos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo
17.
Bioorg Chem ; 91: 103179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404794

RESUMO

Selective inhibition of cyclooxygenase (COX)-2 enzyme is an important achievement when looking for potent anti-inflammatory agents, with fewer gastrointestinal side effects. In this work, a new series of cinnamic acid derivatives, namely hexylamides, have been designed, synthesized and evaluated in human blood for their inhibitory activity of COX-1 and COX-2 enzymes. From this, new structure-activity relationships were built, showing that phenolic hydroxyl groups are essential for both COX-1 and COX-2 inhibition. Furthermore, the presence of bulky hydrophobic di-tert-butyl groups in the phenyl ring strongly contributes for selective COX-2 inhibition. In addition, a correlation with the theoretical log P has been carried out, showing that lipophilicity is particularly important for COX-2 inhibition. Further, a plasma protein binding (PPB) prediction has been performed revealing that PPB seems to have no influence in the activity of the studied compounds. From the whole study, effective selective inhibitors of COX-2 were found, namely compound 9 (IC50 = 3.0 ±â€¯0.3 µM), 10 (IC50 = 2.4 ±â€¯0.6 µM) and 23 (IC50 = 1.09 ±â€¯0.09 µM). Those can be considered starting point hit compounds for further optimization as potential non-steroidal anti-inflammatory drugs.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Cinamatos/química , Ciclo-Oxigenase 1/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/química , Desenho de Fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Dinoprostona/metabolismo , Humanos , Leucócitos Mononucleares/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
J Enzyme Inhib Med Chem ; 34(1): 577-588, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30724629

RESUMO

α-Amylase has been considered an important therapeutic target for the management of type 2 diabetes mellitus (T2DM), decreasing postprandial hyperglycaemia (PPHG). In the present work, a panel of 40 structurally related flavonoids was tested, concerning their ability to inhibit α-amylase activity, using a microanalysis screening system, an inhibitory kinetic analysis and molecular docking calculations. From the obtained results, it was possible to observe that the flavone with a -Cl ion at 3-position of C-ring, an -OH group at 3'- and 4'- positions of B-ring and at 5- and 7- positions of A-ring and the C2 = C3 double bond, was the most active tested flavonoid, through competitive inhibition. In conclusion, some of the tested flavonoids have shown promising inhibition of α-amylase and may be considered as possible alternatives to the modulation of T2DM.


Assuntos
Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases Pancreáticas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Flavonoides/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Estrutura Molecular , alfa-Amilases Pancreáticas/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
19.
Eur Arch Otorhinolaryngol ; 276(10): 2739-2745, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31222585

RESUMO

INTRODUCTION: Sudden sensorineural hearing loss (SSHL) is an otologic urgency whose treatment is still controversial. Its etiology remains largely unknown in most cases and predicting its prognosis is still a challenge. Cardiovascular risk factors (CVRF) have been implicated in the etiopathogenesis of this entity. OBJECTIVES: Application of the SCORE (Systematic Coronary Risk Evaluation) risk scale in patients with SSHL and evaluation of its potential prognostic value in recovery in patients with CVRF. MATERIALS AND METHODS: Prospective analysis of patients with SSHL admitted for protocol treatment including intravenous corticosteroid therapy associated to weekly intratympanic injection in the event of therapeutic failure or severe hearing loss at admission. Demographic, audiometric, clinical and imaging data were assessed. The SCORE risk scale was applied and the audiometric recovery was compared among different risk groups. RESULTS: Our overall complete and partial recovery rates were 35.9% and 26%, respectively. More than a half of our patients had at least one CVRF. Of these, overweight/obesity, hyperlipidemia and hypertension were the most common. In our sample, patients with CVRF and higher SCORE risk presented higher PTA at admission and also worse hearing outcome, although these results were not statically significant. CONCLUSION: This preliminary study could not confirm the validity for SCORE scale for cardiovascular risk assessment in predicting audiometric recovery in patients with SSHL with multiple comorbidities. Further research with larger samples are needed to elucidate the etiology of SSHL and the exact role of cardiovascular risk factors in the pathophysiology of SSHL. LEVEL OF EVIDENCE: 4.


Assuntos
Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Súbita/epidemiologia , Prognóstico , Medição de Risco , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Audiometria de Tons Puros , Doenças Cardiovasculares/epidemiologia , Dexametasona/uso terapêutico , Diabetes Mellitus/epidemiologia , Feminino , Glucocorticoides/uso terapêutico , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Súbita/tratamento farmacológico , Humanos , Injeção Intratimpânica , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Estudos Prospectivos , Recuperação de Função Fisiológica , Fumar/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Adulto Jovem
20.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382586

RESUMO

Peroxisomes are ubiquitous organelles with well-defined functions in lipid and reactive oxygen species metabolism, having a significant impact on a large number of important diseases. Growing evidence points to them, in concert with mitochondria, as important players within the antiviral response. In this review we summarize and discuss the recent findings concerning the relevance of peroxisomes within innate immunity. We not only emphasize their importance as platforms for cellular antiviral signaling but also review the current information concerning their role in the control of bacterial infections. We furthermore review the recent data that pinpoints peroxisomes as regulators of inflammatory processes.


Assuntos
Infecções Bacterianas/imunologia , Imunidade Inata , Peroxissomos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Antivirais/uso terapêutico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/virologia , Humanos , Peroxissomos/microbiologia , Peroxissomos/virologia , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA