Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 133(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31862795

RESUMO

The pathogenesis of human malarial parasite Plasmodium falciparum is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The P. falciparum (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite. Here, we show the existence of a novel proteolytic processing for PfGCN5 that is crucial for its activity in vivo We find that a cysteine protease-like enzyme is required for the processing of PfGCN5 protein. Immunofluorescence and immuno-electron microscopy analysis suggest that the processing event occurs in the vicinity of the digestive vacuole of the parasite following its trafficking through the classical ER-Golgi secretory pathway, before it subsequently reaches the nucleus. Furthermore, blocking of PfGCN5 processing leads to the concomitant reduction of its occupancy at the gene promoters and a reduced H3K9 acetylation level at these promoters, highlighting the important correlation between the processing event and PfGCN5 activity. Altogether, our study reveals a unique processing event for a nuclear protein PfGCN5 with unforeseen role of a food vacuolar cysteine protease. This leads to a possibility of the development of new antimalarials against these targets.This article has an associated First Person interview with the first author of the paper.


Assuntos
Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Humanos
2.
Indian J Med Res ; 156(4&5): 659-668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926783

RESUMO

Background & objectives: COVID-19 has been a global pandemic since early 2020. It has diverse clinical manifestations, but consistent immunological and metabolic correlates of disease severity and protection are not clear. This study was undertaken to compare seropositivity rate, antibody levels against nucleocapsid and spike proteins, virus neutralization and metabolites between adult and child COVID-19 patients. Methods: Plasma samples from naïve control (n=14) and reverse transcription (RT)-PCR positive COVID-19 participants (n=132) were tested for reactivity with nucleocapsid and spike proteins by ELISA, neutralization of SARS-CoV-2 infectivity in Vero cells and metabolites by [1]H nuclear magnetic resonance (NMR) spectroscopy. Results: An ELISA platform was developed using nucleocapsid and spike proteins for COVID-19 serosurvey. The participants showed greater seropositivity for nucleocapsid (72%) than spike (55.3%), and males showed higher seropositivity than females for both the proteins. Antibody levels to both the proteins were higher in intensive care unit (ICU) than ward patients. Children showed lower seropositivity and antibody levels than adults. In contrast to ICU adults (81.3%), ICU children (33.3%) showed lower seropositivity for spike. Notably, the neutralization efficiency correlated with levels of anti-nucleocapsid antibodies. The levels of plasma metabolites were perturbed differentially in COVID-19 patients as compared with the naive controls. Interpretation & conclusions: Our results reflect the complexity of human immune response and metabolome to SARS-CoV-2 infection. While innate and cellular immune responses are likely to be a major determinant of disease severity and protection, antibodies to multiple viral proteins likely affect COVID-19 pathogenesis. In children, not adults, lower seropositivity rate for spike was associated with disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Feminino , Animais , Chlorocebus aethiops , Humanos , Criança , Células Vero , Glicoproteína da Espícula de Coronavírus , Formação de Anticorpos , Anticorpos Antivirais
3.
Biochem J ; 478(9): 1705-1732, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33843972

RESUMO

Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacúolos/metabolismo , Amodiaquina/farmacologia , Animais , Antimaláricos/farmacologia , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , Malária/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/efeitos dos fármacos
4.
Int J Parasitol ; 53(3): 157-175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657610

RESUMO

DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.


Assuntos
Antimaláricos , Inibidores da Protease de HIV , Plasmodium , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Camundongos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Dano ao DNA , Plasmodium/genética , DNA , Cromatina , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética
5.
Microbiol Spectr ; 10(3): e0278121, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35616371

RESUMO

Despite a remarkable improvement in health care and continued drug discovery efforts, malaria control efforts are continuously challenged by the emergence of drug-resistant parasite strains. Given a long and risky development path of new drugs, repurposing existing drugs for the treatment of malaria is an attractive and shorter path. Tamoxifen, a selective estrogen receptor modulator (SERM) for the treatment and prevention of estrogen receptor-positive breast cancer, possesses antibacterial, antifungal, and antiparasitic activities. Hence, we assessed tamoxifen, raloxifene, and bazedoxifene, which represent the first-, second-, and third-generation SERMs, respectively, for antimalarial activity. Raloxifene and bazedoxifene inhibited the erythrocytic development of Plasmodium falciparum with submicromolar 50% inhibitory concentration (IC50) values. Among the three, bazedoxifene was the most potent and also decreased P. berghei infection in female mice but not in male mice. However, bazedoxifene similarly inhibited P. falciparum growth in erythrocytes of male and female origin, which highlights the importance of sex-specific host physiology in drug efficacy. Bazedoxifene was most potent on early ring-stage parasites, and about 35% of the treated parasites did not contain hemozoin in the food vacuole. Bazedoxifene-treated parasites had almost 34% less hemozoin content than the control parasites. However, both control and bazedoxifene-treated parasites had similar hemoglobin levels, suggesting that bazedoxifene inhibits hemozoin formation and that toxicity due to accumulation of free heme could be a mechanism of its antimalarial activity. Because bazedoxifene is in clinical use and bazedoxifene-chloroquine combination shows an additive antiparasitic effect, bazedoxifene could be an adjunctive partner of currently used antimalarial regimens. IMPORTANCE The emergence and spread of drug-resistant strains of the human malaria parasite Plasmodium falciparum has necessitated new drugs. Selective estrogen receptor modulators are in clinical use for the prevention and treatment of breast cancer and postmenopausal osteoporosis. We demonstrate that bazedoxifene, a third-generation selective estrogen receptor modulator, has potent inhibitory activity against both susceptible and drug-resistant strains of Plasmodium falciparum. It also blocked the development of Plasmodium berghei in mice. The inhibitory effect was strongest on the ring stage and resulted in the inhibition of hemozoin formation, which could be the major mechanism of bazedoxifene action. Hemozoin is a nontoxic polymer of heme, which is a by-product of hemoglobin degradation by the malaria parasite during its development within the erythrocyte. Because bazedoxifene is already in clinical use for the treatment of postmenopausal osteoporosis, our findings support repurposing of bazedoxifene as an antimalarial.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Neoplasias , Osteoporose Pós-Menopausa , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Feminino , Heme/metabolismo , Heme/farmacologia , Heme/uso terapêutico , Hemeproteínas , Hemoglobinas , Humanos , Indóis , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Osteoporose Pós-Menopausa/tratamento farmacológico , Plasmodium falciparum , Pós-Menopausa , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
6.
Sci Rep ; 10(1): 20220, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214620

RESUMO

A variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. We characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Ala/Gly76Ala) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (rub1Δ) or NEDD8 conjugating E2 enzyme (ubc12Δ). The PfNEDD8 immunoprecipitate also contained S. cerevisiae cullin cdc53, further substantiating cullins as physiological substrates of PfNEDD8. Our findings lay ground for investigation of specific roles and drug target potential of neddylation in malaria parasites.


Assuntos
Proteínas Culina/metabolismo , Proteína NEDD8/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Culina/genética , Bases de Dados Genéticas , Proteína NEDD8/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
7.
J Agric Food Chem ; 66(40): 10490-10495, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30230327

RESUMO

The biotransformation of the front-line antimalarial drug, artemisinin (1) by the filamentous fungus Aspergillus flavus MTCC-9167 was investigated. Incubation of compound 1 with A. flavus afforded a new hydroxy derivative (2) along with three known metabolites (3-5). The new compound was characterized as 14-hydroxydeoxyartemisinin (2) by extensive spectroscopic data analysis (IR, 1H and 13C NMR, HSQC, HMBC, COSY, NOESY, and HR-ESIMS). The known metabolites were identified as deoxyartemisinin (3), artemisinin G (4), and 4α-hydroxydeoxyartemisinin (5). This is the first report of hydroxylation of a secondary methyl of artemisinin at C-14 by the fungus A. flavus, which is synthetically not accessible. In addition, these compounds were evaluated for their in vitro antiplasmodial activity. Artemisinin G (4) exhibited IC50 values in the submicromolar range, which was better than those of the nonperoxidic metabolites.


Assuntos
Artemisininas/química , Artemisininas/metabolismo , Aspergillus flavus/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Biotransformação , Hidroxilação , Espectroscopia de Ressonância Magnética , Estrutura Molecular
8.
Mol Biochem Parasitol ; 222: 70-80, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29753659

RESUMO

Plasmodium falciparum DJ1 (PfDJ1) belongs to the DJ-1/ThiJ/PfpI superfamily whose members are present in all the kingdoms of life and exhibit diverse cellular functions and biochemical activities. The common feature of the superfamily is the class I glutamine amidotransferase domain with a conserved redox-active cysteine residue, which mediates various activities of the superfamily members, including anti-oxidative activity in PfDJ1 and human DJ1 (hDJ1). As the superfamily members represent diverse functional classes, to investigate if there is any sequence feature unique to hDJ1-like proteins, sequences of the representative proteins of different functional classes were compared and analysed. A novel motif unique to PfDJ1 and several other hDJ1-like proteins, with the consensus sequence of TSXGPX5FXLX5L, was identified that we designated as the hDJ1-subfamily motif (DJSM). Several mutations that have been associated with Parkinson's disease are also present in DJSM, suggesting its functional importance in hDJ1-like proteins. Mutations of the conserved residues of DJSM of PfDJ1 did not significantly affect overall secondary structure, but caused both a significant loss (S151A and P154A) and gain (L168A) of anti-oxidative activity. We also report that PfDJ1 has deglycase activity, which was significantly decreased in its mutants of the catalytic cysteine (C106A) and DJSM (S151A and P154A). Episomal expression of the catalytic cysteine (C106A) or DJSM (P154A) mutant decreased growth rates of parasites as compared to that of wild type parasites or parasites expressing wild type PfDJ1. S151 appears to properly position the nucleophilic elbow containing C106 and P154 forms a hydrogen bond with C106, which could be a reason for the loss of activities of PfDJ1 upon their mutations. Taken together, DJSM delineates PfDJ1 and other hDJ1-subfamily proteins from the remaining superfamily, and is critical for anti-oxidative and deglycase activities of PfDJ1.


Assuntos
Estresse Oxidativo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Sequência Conservada , Humanos , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteína Desglicase DJ-1/genética , Proteínas de Protozoários/genética , Alinhamento de Sequência
9.
Mol Biochem Parasitol ; 202(2): 11-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26439304

RESUMO

Falcipain-3 (FP3) is an essential and drug target cysteine protease of the most lethal human malaria parasite Plasmodium falciparum. FP3 and its majority of homologs in malaria parasites prefer Leu at the P2 position in substrates and inhibitors, whereas its major host homolog cathepsin L prefers Phe. However, FP3 is much less active on peptide substrates and has negligible activity against a P2 Arg-containing substrate (Z-RR-AMC) compared to its paralog falcipain-2A (FP2A). To identify the specificity determinants, the S2/3 pocket residues of FP3 were substituted with the corresponding residues in FP2 or cathepsin L, and the wild type and mutant proteases were assessed for hydrolysis of peptide and protein substrates. Our results indicate that the S2 pocket residues I94 and P181 of FP3 are chiefly responsible for its P2 Leu preference and negligible activity for Z-RR-AMC, respectively. E243 in FP3 and the corresponding residue D234 in FP2 have a key role in Z-RR-AMC hydrolysing activity, possibly through stabilization of side chain interactions, as their substitution with Ala abolished the activity. Several FP3 mutants, which retained P2 Leu preference and showed similar or more activity than wild type FP3 on peptide substrates, degraded haemoglobin less efficiently than wild type FP3, suggesting that multiple residues contribute to haemoglobinase activity. Furthermore, P181 and E243 appear to contribute to the optimum activity of FP3 in the food vacuole milieu (≈pH 5.5). The identification of residues determining specificity of FP3 could aid in developing specific inhibitors of FP3 and its homologs in malaria parasites.


Assuntos
Cumarínicos/metabolismo , Cisteína Endopeptidases/química , Dipeptídeos/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Sequência de Aminoácidos , Domínio Catalítico , Catepsina L/química , Cisteína Endopeptidases/genética , Hemoglobinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Leucina/química , Leucina/genética , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Proteínas de Protozoários/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA