Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Exp Cell Res ; 396(2): 112297, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980291

RESUMO

Mutations in the Lmod3 gene have been identified as a genetic cause of nemaline myopathy. However, the mechanism underlying this disease and the function of Lmod3 remain largely unknown. In this study, we found that Lmod3 knockdown in C2C12 cells impaired myoblast differentiation, whereas enforced Lmod3 expression enhanced such differentiation. We also discovered that myoblast proliferation was promoted by Lmod3 overexpression but impeded by its knockdown. Additionally, knockdown of Lmod3 led to apoptosis in myoblasts. Concurrently, forced Lmod3 expression in C2C12 cells contributed to activation of the AKT and ERK pathways during myoblast differentiation and proliferation, respectively. Conversely, knockdown of Lmod3 in C2C12 cells produced the opposite results. Furthermore, administration of IGF-1, a booster of both AKT and ERK pathways, partially rescued the inhibitory effect of Lmod3 knockdown on both differentiation and proliferation of C2C12 cells. These results suggest that Lmod3 promotes differentiation and proliferation of myoblasts through the AKT and ERK pathways, respectively.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/metabolismo , Mioblastos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Regulação para Cima/genética
2.
Life Sci ; 328: 121902, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392777

RESUMO

AIMS: The small GTPase protein ARF1 has been shown to be involved in the lipolysis pathway and to selectively kill stem cells in Drosophila melanogaster. However, the role of ARF1 in mammalian intestinal homeostasis remains elusive. This study aimed to explore the role of ARF1 in intestinal epithelial cells (IECs) and reveal the possible mechanism. MATERIALS AND METHODS: IEC-specific ARF1 deletion mouse model was used to evaluate the role of ARF1 in intestine. Immunohistochemistry and immunofluorescence analyses were performed to detect specific cell type markers, and intestinal organoids were cultured to assess intestinal stem cell (ISC) proliferation and differentiation. Fluorescence in situ hybridization, 16S rRNA-seq analysis, and antibiotic treatments were conducted to elucidate the role of gut microbes in ARF1-mediated intestinal function and the underlying mechanism. Colitis was induced in control and ARF1-deficient mice by dextran sulfate sodium (DSS). RNA-seq was performed to elucidate the transcriptomic changes after ARF1 deletion. KEY FINDINGS: ARF1 was essential for ISC proliferation and differentiation. Loss of ARF1 increased susceptibility to DSS-induced colitis and gut microbial dysbiosis. Gut microbiota depletion by antibiotics could rescue the intestinal abnormalities to a certain extent. Furthermore, RNA-seq analysis revealed alterations in multiple metabolic pathways. SIGNIFICANCE: This work is the first to elucidate the essential role of ARF1 in regulating gut homeostasis, and provides novel insights into the pathogenesis of intestinal diseases and potential therapeutic targets.


Assuntos
Fator 1 de Ribosilação do ADP , Células-Tronco Adultas , Microbioma Gastrointestinal , Intestino Delgado , Animais , Camundongos , Camundongos Knockout , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Fator 1 de Ribosilação do ADP/metabolismo , Células-Tronco Adultas/metabolismo , Disbiose/metabolismo , Antibacterianos/administração & dosagem , Transcrição Gênica , Homeostase , Redes e Vias Metabólicas
3.
Front Bioeng Biotechnol ; 11: 1159805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274158

RESUMO

Introduction: Functional disorder of the placenta is the principal cause of fetal growth restriction (FGR), usually cured with suitable clinical treatment and good nursing. However, some FGR mothers still give birth to small for gestational age (SGA) babies after treatment. The ineffectiveness of treatment in such a group of patients confused physicians of obstetrics and gynecology. Methods: In this study, we performed a microRNA-messenger RNA integrative analysis of gene expression profiles obtained from Gene Expression Omnibus. Differentially expressed genes were screened and checked using quantitative polymerase chain reaction. Target genes of significantly changed microRNA were screened and enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Function of the obtained microRNA-messenger RNA was evaluated using HTR-8/SVneo trophoblast cells, human umbilical vein endothelial cells, and heterozygote male mice. Result: MiR-155-5p was upregulated (p = 0.001, fold-change = 2.275) in fetal-side placentals. Among the hub genes identified as key targets for miR-155-5p in fetal reprogramming, Smad2 was downregulated (p = 0.002, fold change = 0.426) and negatively correlated with miR-155-5p expression levels (r = -0.471, p < 1.0 E - 04) in fetal-side placental tissues. The miR-155-5p mimic blocks Smad2 expression and suppresses villous trophoblast cell and endothelial cell function (proliferation, migration, and invasion), indicating a close relationship with placental development. Luciferase assays further confirmed the targeting of miR-155-5p to Smad2. Furthermore, Smad2+/- heterozygote male mice were born small with low body weight (p = 0.0281) and fat composition (p = 0.013) in the fourth week post-natal. Discussion: We provide the first evidence of the role of the Smad2/miR-155-5p axis in the placental pathologies of FGR. Our findings elucidate the pathogenesis of FGR and provide new therapeutic targets.

4.
Cell Rep ; 39(12): 110958, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732115

RESUMO

We previously showed that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. Here we show that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. We identify an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity.


Assuntos
Drosophila , Lipólise , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular , Drosophila/metabolismo , Células-Tronco Neoplásicas/metabolismo
5.
Nucleic Acids Res ; 36(Database issue): D729-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17932058

RESUMO

DNA transposon piggyBac (PB) is a newly established mutagen for large-scale mutagenesis in mice. We have designed and implemented an integrated database system called PBmice (PB Mutagenesis Information CEnter) for storing, retrieving and displaying the information derived from PB insertions (INSERTs) in the mouse genome. This system is centered on INSERTs with information including their genomic locations and flanking genomic sequences, the expression levels of the hit genes, and the expression patterns of the trapped genes if a trapping vector was used. It also archives mouse phenotyping data linked to INSERTs, and allows users to conduct quick and advanced searches for genotypic and phenotypic information relevant to a particular or a set of INSERT(s). Sequence-based information can be cross-referenced with other genomic databases such as Ensembl, BLAST and GBrowse tools used in PBmice offer enhanced search and display for additional information relevant to INSERTs. The total number and genomic distribution of PB INSERTs, as well as the availability of each PB insertional LINE can also be viewed with user-friendly interfaces. PBmice is freely available at http://www.idmshanghai.cn/PBmice or http://www.scbit.org/PBmice/.


Assuntos
Elementos de DNA Transponíveis , Bases de Dados Genéticas , Camundongos/genética , Mutagênese Insercional , Animais , Expressão Gênica , Genômica , Internet , Fenótipo , Integração de Sistemas , Interface Usuário-Computador
6.
BMC Genomics ; 10 Suppl 3: S7, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19958505

RESUMO

BACKGROUND: Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. RESULTS: This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. CONCLUSION: MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma , Mutagênese Insercional , Análise de Sequência de DNA/métodos , Design de Software , Animais , Internet , Camundongos
7.
PLoS Biol ; 4(6): e170, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16613483

RESUMO

Polycomb group (PcG) proteins are able to maintain the memory of silent transcriptional states of homeotic genes throughout development. In Drosophila, they form multimeric complexes that bind to specific DNA regulatory elements named PcG response elements (PREs). To date, few PREs have been identified and the chromosomal distribution of PcG proteins during development is unknown. We used chromatin immunoprecipitation (ChIP) with genomic tiling path microarrays to analyze the binding profile of the PcG proteins Polycomb (PC) and Polyhomeotic (PH) across 10 Mb of euchromatin. We also analyzed the distribution of GAGA factor (GAF), a sequence-specific DNA binding protein that is found at most previously identified PREs. Our data show that PC and PH often bind to clustered regions within large loci that encode transcription factors which play multiple roles in developmental patterning and in the regulation of cell proliferation. GAF co-localizes with PC and PH to a limited extent, suggesting that GAF is not a necessary component of chromatin at PREs. Finally, the chromosome-association profile of PC and PH changes during development, suggesting that the function of these proteins in the regulation of some of their target genes might be more dynamic than previously anticipated.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Cromatina/genética , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Hibridização in Situ Fluorescente , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Complexo Repressor Polycomb 1 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
PLoS Biol ; 2(3): E69, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15024419

RESUMO

The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the alpha-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel-D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.


Assuntos
Genômica/métodos , Wolbachia/genética , Trifosfato de Adenosina/química , Animais , Linhagem da Célula , DNA/química , DNA/genética , Primers do DNA/química , Drosophila melanogaster/microbiologia , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Biblioteca Gênica , Genes Bacterianos , Genoma , Genoma Bacteriano , Glicólise , Sequências Repetitivas Dispersas , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Parasitos , Filogenia , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Purinas/química
9.
Cell Biosci ; 6: 38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274810

RESUMO

BACKGROUND: Leiomodin proteins, Lmod1, Lmod2 and Lmod3, are key regulators of the thin filament length in muscles. While Lmod1 is specifically expressed in smooth muscles, both Lmod2 and Lmod3 are expressed in striated muscles including both cardiac and skeletal muscles. We and others have previously shown that Lmod3 mainly function in skeletal muscles and the mutant mice display disorganized sarcomere. Lmod2 protein has been found to act as an actin filament nucleator in both cell-free assays and in cultured rat and chicken cardiomyocytes. RESULTS: To better understand the function of Lmod2 in vivo, we have identified and characterized a piggyBac (PB) insertional mouse mutant. Our analysis revealed that the PB transposon inserts in the first exon of the Lmod2 gene and severely disrupts its expression. We found that Lmod2 (PB/PB) mice exhibit typical dilated cardiomyopathy (DCM) with ventricular arrhythmias and postnatal lethality. Electron microscope reveals that the Lmod2 (PB/PB) hearts carry disordered sarcomere, disarrayed thin filaments, and distorted intercalated discs (ICDs). Those ICDs display not only decreased convolutions, but also reduced electron-dense staining, indicating less ICDs component proteins in Lmod2 (PB/PB) hearts. Consistent with the phenotype, the expression of the ICD component genes, ß-catenin and Connexin43, are down-regulated. CONCLUSIONS: Taken together, our data reveal that Lmod2 is required in heart thin filaments for integrity of sarcomere and ICD and deficient mice exhibit DCM with ventricular arrhythmias and postnatal lethality. The Lmod2 (PB/PB) mutant offers a valuable resource for interrogation of pathogenesis and development of therapeutics for DCM.

10.
J Clin Invest ; 126(9): 3192-206, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27500489

RESUMO

A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Comportamento Animal , Eletrofisiologia , Fígado Gorduroso/metabolismo , Feminino , Glucose/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Mutagênese , Mutação , Neuropeptídeos/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
11.
PLoS One ; 9(3): e90701, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595170

RESUMO

The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.


Assuntos
Placentação , Proteínas Serina-Treonina Quinases/genética , Trofoblastos/citologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Trofoblastos/metabolismo
12.
Genome Res ; 19(6): 1006-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19237466

RESUMO

We determined the physical locations of the heterodimeric Ecdysone receptor/Ultraspiracle (ECR/USP) nuclear hormone receptor complex throughout the entire nonrepetitive genome of Drosophila melanogaster using a cell line (Kc167) that differentiates in response to 20-hydroxyecdysone (20-HE). 20-HE, the natural ligand of this complex, controls major aspects of insect development, including molting, metamorphosis, and reproduction. Direct gene targets of 20-HE signaling were identified by combining this physical binding-site profiling with gene expression profiling after treatment with 20-HE. We found 502 significant regions of ECR/USP binding throughout the genome. Only 42% of these regions are nearby genes that are 20-HE responsive in these cells. However, at least three quarters of the remaining ECR/USP regions are near 20-HE-regulated genes in other tissue and cell types during metamorphosis, suggesting that binding at many regulatory elements in the genome is largely noncell-type specific. The majority (21/26) of the early targets of 20-HE encode transcriptional regulatory factors. To determine whether any of these targets are required for the morphological differentiation of these cells, we used RNAi to reduce the expression of each of the 26 early genes. Accordingly, we found that three direct targets of ECR/USP--hairy, vrille, and Hr4--are required for cellular differentiation in response to the hormone. Initial mutational analysis of vrille in vivo reveals that it is required for metamorphosis.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Genoma/genética , Receptores de Esteroides/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Mapeamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisterona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transfecção
14.
Proc Natl Acad Sci U S A ; 103(32): 12027-32, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16880385

RESUMO

Regulation of gene expression is a highly complex process that requires the concerted action of many proteins, including sequence-specific transcription factors, cofactors, and chromatin proteins. In higher eukaryotes, the interplay between these proteins and their interactions with the genome still is poorly understood. We systematically mapped the in vivo binding sites of seven transcription factors with diverse physiological functions, five cofactors, and two heterochromatin proteins at approximately 1-kb resolution in a 2.9 Mb region of the Drosophila melanogaster genome. Surprisingly, all tested transcription factors and cofactors show strongly overlapping localization patterns, and the genome contains many "hotspots" that are targeted by all of these proteins. Several control experiments show that the strong overlap is not an artifact of the techniques used. Colocalization hotspots are 1-5 kb in size, spaced on average by approximately 50 kb, and preferentially located in regions of active transcription. We provide evidence that protein-protein interactions play a role in the hotspot association of some transcription factors. Colocalization hotspots constitute a previously uncharacterized type of feature in the genome of Drosophila, and our results provide insights into the general targeting mechanisms of transcription regulators in a higher eukaryote.


Assuntos
Genoma , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/química , Drosophila melanogaster , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Ligação Proteica , Transcrição Gênica
15.
J Bacteriol ; 185(24): 7077-84, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645266

RESUMO

We report here the construction of a physical and genetic map of the virulent Wolbachia strain, wMelPop. This map was determined by ordering 28 chromosome fragments that resulted from digestion with the restriction endonucleases FseI, ApaI, SmaI, and AscI and were resolved by pulsed-field gel electrophoresis. Southern hybridization was done with 53 Wolbachia-specific genes as probes in order to determine the relative positions of these restriction fragments and use them to serve as markers. Comparison of the resulting map with the whole genome sequence of the closely related benign Wolbachia strain, wMel, shows that the two genomes are largely conserved in gene organization with the exception of a single inversion in the chromosome.


Assuntos
Genoma Bacteriano , Wolbachia/genética , Southern Blotting , Mapeamento Cromossômico , Fenótipo , Virulência/genética , Wolbachia/patogenicidade
16.
Proc Natl Acad Sci U S A ; 100(16): 9428-33, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12876199

RESUMO

We demonstrate the use of a chromosomal walk (or "tiling path") printed as DNA microarrays for mapping protein-DNA interactions across large regions of contiguous genomic DNA in Drosophila melanogaster. Microarrays were constructed with genomic DNA fragments 430-920 bp in length, covering 2.9 million base pairs of the Adh-cactus region of chromosome 2 and 85,000 base pairs of the 82F region of chromosome 3. We performed DNA localization mapping for the heterochromatin protein HP1 and for the sequence-specific GAGA transcription factor, producing a comprehensive, high-resolution map of in vivo protein-DNA interactions throughout these regions of the Drosophila genome.


Assuntos
Proteínas de Ligação a DNA/química , DNA/metabolismo , Drosophila/genética , Análise de Sequência com Séries de Oligonucleotídeos , Motivos de Aminoácidos , Animais , Cromatina/metabolismo , Testes de Precipitina , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA