Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520377

RESUMO

Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments.


Assuntos
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Probabilidade
2.
Cereb Cortex ; 33(12): 7322-7334, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813475

RESUMO

The relationship between structural connectivity (SC) and functional connectivity (FC) captured from magnetic resonance imaging, as well as its interaction with disability and cognitive impairment, is not well understood in people with multiple sclerosis (pwMS). The Virtual Brain (TVB) is an open-source brain simulator for creating personalized brain models using SC and FC. The aim of this study was to explore SC-FC relationship in MS using TVB. Two different model regimes have been studied: stable and oscillatory, with the latter including conduction delays in the brain. The models were applied to 513 pwMS and 208 healthy controls (HC) from 7 different centers. Models were analyzed using structural damage, global diffusion properties, clinical disability, cognitive scores, and graph-derived metrics from both simulated and empirical FC. For the stable model, higher SC-FC coupling was associated with pwMS with low Single Digit Modalities Test (SDMT) score (F=3.48, P$\lt$0.05), suggesting that cognitive impairment in pwMS is associated with a higher SC-FC coupling. Differences in entropy of the simulated FC between HC, high and low SDMT groups (F=31.57, P$\lt$1e-5), show that the model captures subtle differences not detected in the empirical FC, suggesting the existence of compensatory and maladaptive mechanisms between SC and FC in MS.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia
3.
Neuroimage ; 276: 120186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268096

RESUMO

Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.


Assuntos
Conectoma , Magnetoencefalografia , Humanos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Mapeamento Encefálico
4.
Hum Brain Mapp ; 43(14): 4475-4491, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642600

RESUMO

How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.


Assuntos
Encéfalo , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
5.
Mult Scler ; 28(13): 2010-2019, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189828

RESUMO

BACKGROUND: Synaptic and neuronal loss contribute to network dysfunction and disability in multiple sclerosis (MS). However, it is unknown whether excitatory or inhibitory synapses and neurons are more vulnerable and how their losses impact network functioning. OBJECTIVE: To quantify excitatory and inhibitory synapses and neurons and to investigate how synaptic loss affects network functioning through computational modeling. METHODS: Using immunofluorescent staining and confocal microscopy, densities of glutamatergic and GABAergic synapses and neurons were compared between post-mortem MS and non-neurological control cases. Then, a corticothalamic biophysical model was employed to study how MS-induced excitatory and inhibitory synaptic loss affect network functioning. RESULTS: In layer VI of normal-appearing MS cortex, excitatory and inhibitory synaptic densities were significantly lower than controls (reductions up to 14.9%), but demyelinated cortex showed larger losses of inhibitory synapses (29%). In our computational model, reducing inhibitory synapses impacted the network most, leading to a disinhibitory increase in neuronal activity and connectivity. CONCLUSION: In MS, excitatory and inhibitory synaptic losses were observed, predominantly for inhibitory synapses in demyelinated cortex. Inhibitory synaptic loss affected network functioning most, leading to increased neuronal activity and connectivity. As network disinhibition relates to cognitive impairment, inhibitory synaptic loss seems particularly relevant in MS.


Assuntos
Esclerose Múltipla , Córtex Cerebral , Humanos , Neurônios , Sinapses
6.
Neuroimage ; 232: 117898, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33621696

RESUMO

The characterization of the distinct dynamic functional connectivity (dFC) patterns that activate in the brain during rest can help to understand the underlying time-varying network organization. The presence and behavior of these patterns (known as meta-states) have been widely studied by means of functional magnetic resonance imaging (fMRI). However, modalities with high-temporal resolution, such as electroencephalography (EEG), enable the characterization of fast temporally evolving meta-state sequences. Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to disrupt spatially localized activation and dFC between different brain regions, but not much is known about how they affect meta-state network topologies and their network dynamics. The main hypothesis of the study was that MCI and dementia due to AD alter normal meta-state sequences by inducing a loss of structure in their patterns and a reduction of their dynamics. Moreover, we expected that patients with MCI would display more flexible behavior compared to patients with dementia due to AD. Thus, the aim of the current study was twofold: (i) to find repeating, distinctly organized network patterns (meta-states) in neural activity; and (ii) to extract information about meta-state fluctuations and how they are influenced by MCI and dementia due to AD. To accomplish these goals, we present a novel methodology to characterize dynamic meta-states and their temporal fluctuations by capturing aspects based on both their discrete activation and the continuous evolution of their individual strength. These properties were extracted from 60-s resting-state EEG recordings from 67 patients with MCI due to AD, 50 patients with dementia due to AD, and 43 cognitively healthy controls. First, the instantaneous amplitude correlation (IAC) was used to estimate instantaneous functional connectivity with a high temporal resolution. We then extracted meta-states by means of graph community detection based on recurrence plots (RPs), both at the individual- and group-level. Subsequently, a diverse set of properties of the continuous and discrete fluctuation patterns of the meta-states was extracted and analyzed. The main novelty of the methodology lies in the usage of Louvain GJA community detection to extract meta-states from IAC-derived RPs and the extended analysis of their discrete and continuous activation. Our findings showed that distinct dynamic functional connectivity meta-states can be found on the EEG time-scale, and that these were not affected by the oscillatory slowing induced by MCI or dementia due to AD. However, both conditions displayed a loss of meta-state modularity, coupled with shorter dwell times and higher complexity of the meta-state sequences. Furthermore, we found evidence that meta-state sequencing is not entirely random; it shows an underlying structure that is partially lost in MCI and dementia due to AD. These results show evidence that AD progression is associated with alterations in meta-state switching, and a degradation of dynamic brain flexibility.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Rede Nervosa/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino
7.
Mult Scler ; 27(11): 1727-1737, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33295249

RESUMO

BACKGROUND: Cognitive decline remains difficult to predict as structural brain damage cannot fully explain the extensive heterogeneity found between MS patients. OBJECTIVE: To investigate whether functional brain network organization measured with magnetoencephalography (MEG) predicts cognitive decline in MS patients after 5 years and to explore its value beyond structural pathology. METHODS: Resting-state MEG recordings, structural MRI, and neuropsychological assessments were analyzed of 146 MS patients, and 100 patients had a 5-year follow-up neuropsychological assessment. Network properties of the minimum spanning tree (i.e. backbone of the functional brain network) indicating network integration and overload were related to baseline and longitudinal cognition, correcting for structural damage. RESULTS: A more integrated beta band network (i.e. smaller diameter) and a less integrated delta band network (i.e. lower leaf fraction) predicted cognitive decline after 5 years (Radj2=15%), independent of structural damage. Cross-sectional analyses showed that a less integrated network (e.g. lower tree hierarchy) related to worse cognition, independent of frequency band. CONCLUSIONS: The level of functional brain network integration was an independent predictive marker of cognitive decline, in addition to the severity of structural damage. This work thereby indicates the promise of MEG-derived network measures in predicting disease progression in MS.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Estudos Transversais , Humanos , Magnetoencefalografia , Esclerose Múltipla/complicações , Rede Nervosa/diagnóstico por imagem
8.
Neuroimage ; 216: 116805, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335264

RESUMO

Functional brain networks are shaped and constrained by the underlying structural network. However, functional networks are not merely a one-to-one reflection of the structural network. Several theories have been put forward to understand the relationship between structural and functional networks. However, it remains unclear how these theories can be unified. Two existing recent theories state that 1) functional networks can be explained by all possible walks in the structural network, which we will refer to as the series expansion approach, and 2) functional networks can be explained by a weighted combination of the eigenmodes of the structural network, the so-called eigenmode approach. To elucidate the unique or common explanatory power of these approaches to estimate functional networks from the structural network, we analysed the relationship between these two existing views. Using linear algebra, we first show that the eigenmode approach can be written in terms of the series expansion approach, i.e., walks on the structural network associated with different hop counts correspond to different weightings of the eigenvectors of this network. Second, we provide explicit expressions for the coefficients for both the eigenmode and series expansion approach. These theoretical results were verified by empirical data from Diffusion Tensor Imaging (DTI) and functional Magnetic Resonance Imaging (fMRI), demonstrating a strong correlation between the mappings based on both approaches. Third, we analytically and empirically demonstrate that the fit of the eigenmode approach to measured functional data is always at least as good as the fit of the series expansion approach, and that errors in the structural data lead to large errors of the estimated coefficients for the series expansion approach. Therefore, we argue that the eigenmode approach should be preferred over the series expansion approach. Results hold for eigenmodes of the weighted adjacency matrices as well as eigenmodes of the graph Laplacian. â€‹Taken together, these results provide an important step towards unification of existing theories regarding the structure-function relationships in brain networks.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo , Imagem de Tensor de Difusão/métodos , Rede Nervosa , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conjuntos de Dados como Assunto , Humanos , Modelos Estatísticos , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
9.
Cereb Cortex ; 29(6): 2668-2681, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897408

RESUMO

Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Magnetoencefalografia , Masculino , Desempenho Psicomotor/fisiologia
10.
Arch Phys Med Rehabil ; 101(2): 234-241, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31473205

RESUMO

OBJECTIVES: To examine the feasibility, reliability, granularity, and convergent validity of a video-based pairwise comparison technique that uses algorithmic support to enable automated rating of motor dysfunction in patients with multiple sclerosis (MS). DESIGN: Feasibility and larger cross-sectional cohort study. SETTING: The outpatient clinic of 2 specialist university medical centers. PARTICIPANTS: Selected sample from a cohort of patients with MS participating in the Assess MS study (N=42). Videos were randomly drawn from each strata of the ataxia severity-degrees as defined in the Expanded Disability Status Scale (EDSS). In Basel: 19 videos of 17 patients (mean age, 43.4±11.6y; 10 women). In Amsterdam: 50 videos of 25 patients (mean age, 50.0±10.0y; 15 women). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: In each center, neurologists (n=13; n=10) viewed pairs of videos of patients performing standardized movements (eg, finger-to-nose test) to assess relative performance. A comparative assessment score was calculated for each video using the TrueSkill algorithm and analyzed for intrarater (test-retest; ratio of agreement) and interrater reliability (intraclass correlation coefficient [ICC] for absolute agreement) and convergent validity (Spearman ρ). Granularity was estimated from the average difference in comparative assessment scores at which 80% of neurologists considered performance to be different. RESULTS: Intrarater reliability was excellent (median ratio of agreement≥0.87). The comparative assessment scores calculated from individual neurologists demonstrated good-excellent ICCs for interrater reliability (0.89; 0.71). The comparative assessment scores correlated (very) highly with their Neurostatus-EDSS equivalent (ρ=0.78, P<.001; ρ=0.91, P<.05), suggesting a more fine-grained rating. CONCLUSIONS: Video-based pairwise comparison of motor dysfunction allows for reliable and fine-grained capturing of clinical judgment about neurologic performance, which can contribute to the development of a consistent quantified metric of motor ability in MS.


Assuntos
Avaliação da Deficiência , Esclerose Múltipla/fisiopatologia , Modalidades de Fisioterapia/normas , Centros Médicos Acadêmicos , Adulto , Algoritmos , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Gravação de Videoteipe
11.
Neuroimage ; 186: 211-220, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399418

RESUMO

Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1-4 Hz) to the high gamma band (40-70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns.


Assuntos
Ondas Encefálicas , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Magnetoencefalografia , Interpretação Estatística de Dados , Imagem de Difusão por Ressonância Magnética , Humanos , Modelos Neurológicos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
12.
Neuroimage ; 200: 38-50, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207339

RESUMO

Fluctuations in functional interactions between brain regions typically occur at the millisecond time scale. Conventional connectivity metrics are not adequately time-resolved to detect such fast fluctuations in functional connectivity. At the same time, attempts to use conventional metrics in a time-resolved manner usually come with the selection of sliding windows of fixed arbitrary length. In the current work, we evaluated the use of high temporal resolution metrics of functional connectivity in conjunction with non-negative tensor factorisation to detect fast fluctuations in connectivity and temporally evolving subnetworks. To this end, we used the phase difference derivative, wavelet coherence, and we also introduced a new metric, the instantaneous amplitude correlation. In order to deal with the inherently noisy nature of magnetoencephalography data and large datasets, we make use of recurrence plots and we used pair-wise orthogonalisation to avoid spurious estimates of functional connectivity due to signal leakage. Firstly, metrics were evaluated in the context of dynamically coupled neural mass models in the presence and absence of delays and also compared to conventional static metrics with fixed sliding windows. Simulations showed that these high temporal resolution metrics outperformed conventional static connectivity metrics. Secondly, the sensitivity of the metrics to fluctuations in connectivity was analysed in post-movement beta rebound magnetoencephalography data, which showed time locked sensorimotor subnetworks that modulated with the post-movement beta rebound. Finally, sensitivity of the metrics was evaluated in resting-state magnetoencephalography, showing similar spatial patterns across metrics, thereby indicating the robustness of the current analysis. The current methods can be applied in cognitive experiments that involve fast modulations in connectivity in relation to cognition. In addition, these methods could also be used as input to temporal graph analysis to further characterise the rapid fluctuation in brain network topology.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Adulto , Conjuntos de Dados como Assunto , Humanos
13.
Mult Scler ; 25(14): 1896-1906, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30465461

RESUMO

BACKGROUND: Neurophysiological measures of brain function, such as magnetoencephalography (MEG), are widely used in clinical neurology and have strong relations with cognitive impairment and dementia but are still underdeveloped in multiple sclerosis (MS). OBJECTIVES: To demonstrate the value of clinically applicable MEG-measures in evaluating cognitive impairment in MS. METHODS: In eyes-closed resting-state, MEG data of 83 MS patients and 34 healthy controls (HCs) peak frequencies and relative power of six canonical frequency bands for 78 cortical and 10 deep gray matter (DGM) areas were calculated. Linear regression models, correcting for age, gender, and education, assessed the relation between cognitive performance and MEG biomarkers. RESULTS: Increased alpha1 and theta power was strongly associated with impaired cognition in patients, which differed between cognitively impaired (CI) patients and HCs in bilateral parietotemporal cortices. CI patients had a lower peak frequency than HCs. Oscillatory slowing was also widespread in the DGM, most pronounced in the thalamus. CONCLUSION: There is a clinically relevant slowing of neuronal activity in MS patients in parietotemporal cortical areas and the thalamus, strongly related to cognitive impairment. These measures hold promise for the application of resting-state MEG as a biomarker for cognitive disturbances in MS in a clinical setting.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/diagnóstico , Magnetoencefalografia , Esclerose Múltipla/complicações , Adulto , Biomarcadores , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Testes Neuropsicológicos
14.
Proc Natl Acad Sci U S A ; 113(14): 3867-72, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001844

RESUMO

Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.


Assuntos
Mapeamento Encefálico , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Lobo Occipital/fisiologia , Humanos , Magnetoencefalografia
15.
Proc Natl Acad Sci U S A ; 113(47): 13510-13515, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27830650

RESUMO

The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology.


Assuntos
Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos , Bainha de Mielina/metabolismo , Rede Nervosa/fisiologia , Adulto , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino
16.
Neuroimage ; 180(Pt B): 559-576, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988134

RESUMO

For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Simulação por Computador , Humanos
17.
Neuroimage ; 166: 371-384, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138088

RESUMO

There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Modelos Teóricos , Rede Nervosa/fisiologia , Humanos
18.
Hum Brain Mapp ; 39(1): 104-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990264

RESUMO

INTRODUCTION: Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co-registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. METHODS: Seventeen healthy participants underwent resting-state eyes-closed MEG and anatomical MRI. These data were projected into source space using an atlas-based peak voxel and a centroid beamforming approach either using (1) participants' native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland-Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. RESULTS: Co-registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. DISCUSSION: These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co-registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104-119, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Magnetoencefalografia , Adulto , Ondas Encefálicas , Humanos , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso
19.
Hum Brain Mapp ; 39(6): 2541-2548, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29468785

RESUMO

To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far.


Assuntos
Encéfalo/fisiopatologia , Modelos Neurológicos , Esclerose Múltipla/patologia , Vias Neurais/patologia , Biofísica , Humanos , Leucoencefalopatias/etiologia , Esclerose Múltipla/complicações , Degeneração Neural/etiologia , Rede Nervosa/fisiopatologia , Tálamo/patologia
20.
Hum Brain Mapp ; 39(6): 2455-2471, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29468769

RESUMO

One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion-weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null-model. The MST of individual subjects matched this reference MST for a mean 58%-88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so-called rich club nodes (a subset of high-degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical-subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Vias Neurais/diagnóstico por imagem , Adulto , Idoso , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA