Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Res ; 211: 113012, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231460

RESUMO

Design and development of inexpensive, portable, and eco-friendly electrochemical non-enzymatic sensors with high selectivity and sensitivity is pivotal in analytical chemistry. In this regard, we have developed a highly porous graphitic-activated carbon (GAC, derived from tamarind fruit shell biomass) coated iron oxide (Fe2O3) nanocomposite (Fe2O3/GAC) for the efficient detection of rutin (vitamin p). Fe2O3/GAC nanocomposite was prepared using a facile green synthesis method and thoroughly characterized using SEM, XRD, and XPS techniques. As-prepared Fe2O3/GAC nanocomposite was deposited over a screen printed electrode (SPE) to fabricate Fe2O3/GAC/SPE and utilized as a non-enzymatic sensor for the electrochemical determination of rutin in food and environmental samples. The modified electrode was characterized using cyclic voltammetry and electrochemical impedance spectroscopy techniques, which witnessed the excellent conductivity of the developed sensor. The fabricated Fe2O3/GAC/SPE nanocomposite exhibited a set of redox peaks in the presence of rutin, corresponding to the electrochemical redox feature of rutin (rutin to 3',4'-diquinone). Further, the modified electrode displayed excellent electrocatalytic characteristics towards the oxidation of rutin, based on which a differential pulse voltammetry-based sensor was developed for rutin determination. The developed non-enzymatic sensor has shown prominent performance towards rutin detection in a wide linear range from 0.1 to 130 µM with an excellent detection limit of 0.027 µM. The enhanced electrocatalytic response could be ascribed to the synergistic effect of Fe2O3 and GAC on the developed probe. Moreover, the developed sensor was successfully utilized for real-time detection of rutin in various samples.


Assuntos
Grafite , Nanocompostos , Biomassa , Técnicas Eletroquímicas/métodos , Compostos Férricos , Nanocompostos/química , Porosidade , Rutina , Vitaminas
2.
Drug Dev Ind Pharm ; 43(9): 1501-1509, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28425323

RESUMO

CONTEXT: Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability. OBJECTIVE: Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison. METHODS: The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated. RESULTS: The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2 h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine. CONCLUSION: Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.


Assuntos
Alcaloides/química , Benzodioxóis/química , Portadores de Fármacos/química , Piperidinas/química , Polietilenoglicóis/química , Alcamidas Poli-Insaturadas/química , Povidona/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Química Farmacêutica , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Chemosphere ; 351: 141219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224750

RESUMO

Degradation of antibiotics through electrocatalytic oxidation has recently been comprehended as a promising strategy in wastewater treatment. Herein, nitrogen and sulphur doped graphene oxide (N,S-rGO) nanosheets were synthesized and employed as metal-free anodic material for electrochemical degradation of antibiotics, viz. metronidazole (MNZ) and tetracycline (TC). The synthesized anodic material was characterized using various spectral techniques and further the electrochemical behaviour of N,S-rGO was thoroughly examined. Thereafter, the N,S-rGO material was then employed as the anode material towards the electrocatalytic degradation of antibiotics. Parameters such as initial concentration of the antibiotics and current densities were varied and their effect towards the degradation of MNZ and TC were probed. Notably, the N,S-rGO based anode has shown impressive removal efficiency of 99% and 98.5%, after 120 min of reaction time for MNZ and TC, respectively, under optimized conditions. The obtained results including the kinetic parameters, removal efficiency and electrical efficiency ensure that the prepared anodic material has huge prospective towards real-time application for removal of antibiotics from water.


Assuntos
Metronidazol , Águas Residuárias , Metronidazol/análise , Carbono , Estudos Prospectivos , Antibacterianos/química , Tetraciclina/química , Metais , Eletrodos
4.
Chemosphere ; 286(Pt 2): 131825, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34375830

RESUMO

Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2-H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl- anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M-1 and 2.32 × 106 M-1 and shows a lower detection limit of 159 nM and 282 nM, respectively.


Assuntos
Líquidos Iônicos , Trinitrotolueno , Corantes Fluorescentes , Picratos , Água
5.
J Pharm Biomed Anal ; 220: 114974, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35963020

RESUMO

A simple and facile functional group-specific multilateral derivatization cum extraction method coupled with GC-MS based analytical methodology has been developed for the rapid identification and determination of five potential genotoxic impurities (GTIs), including epichlorohydrin, hydrazine, phenylhydrazine, 3-chloro-1,2-propanediol and 1-(2-chloroethoxy)- 2-methoxybenzene in the carvedilol phosphate (CRV-P) drug active pharmaceutical ingredient (API). A generic synthetic route has been explored to apply the current investigation to the majority of the market available synthetic routes for the carvedilol process. Five significant GTIs were identified, and their toxicity was examined using in-silico model. The pharmacokinetic and pharmacodynamic properties of the impurities were compared with the drug molecule to evince the associated risk of impurities during therapeutic action. Furthermore, a quantitative comparison has been made for each impurity with the drug molecule for their ADMET properties, and the potential nature of the impurities has been thoroughly assessed. The developed method encompasses simple derivatization cum extraction-oriented GC-MS method for the reported GTIs, which was also validated as per current ICH guidelines. The obtained LOD and LOQ for the method were between 0.06 ~ 0.61 µg/g and 0.17 ~ 1.8 µg/g, respectively, and the r2 values (0.994 ~ 0.997) show that the method is very sensitive and linear over a wide range (LOQ to 120 % of the target concentration). The percentage recoveries and relative standard deviation obtained were between 85.3 and 109.5 and 0.1-4.7, respectively, showing fit for purpose. Moreover, method precision, intermediate precision, and robustness of the method have also been successfully demonstrated. Thus, this method could be directly engaged as the quality forecasting tool for the marketed drug samples aimed at the estimation of the reported GTIs at trace level.


Assuntos
Contaminação de Medicamentos , alfa-Cloridrina , Carvedilol , Dano ao DNA , Epicloroidrina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrazinas , Preparações Farmacêuticas , Fenil-Hidrazinas , Fosfatos
6.
Colloids Surf B Biointerfaces ; 199: 111540, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33383549

RESUMO

Monitoring the concentration levels of hydrogen peroxide (H2O2) is significant in both clinical and industrial applications. Herein, we develop a facile biosensor for the detection of H2O2 based on direct electron transfer of hemoglobin (Hb), which was covalently immobilized on a hydrophobic naphthylimidazolium butyric acid ionic liquid (NIBA-IL) over a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) to obtain an Hb/NIBA-IL/MWCNT/GCE. Highly water-soluble Hb protein was firmly immobilized on NIBA-IL via stable amide bonding between the free NH2 groups of Hb and COOH groups of NIBA-IL via EDC/NHS coupling. Thus fabricated biosensor showed a well resolved redox peak with a cathodic peak potential (Epc) at -0.35 V and anodic peak potential (Epa) at -0.29 V with a formal potential (E°') of -0.32 V, which corresponds to the deeply buried FeIII/FeII redox centre of Hb, thereby direct electrochemistry of Hb was established. Further, the modified electrode demonstrated very good electrocatalytic activity towards H2O2 reduction and showed a wide linear range of detection from 0.01 to 6.3 mM with a limit of detection and sensitivity of 3.2 µM and 111 µA mM-1 cm-2, respectively. Moreover, the developed biosensor displayed high operational stability under dynamic conditions as well as during continuous potential cycles and showed reliable reproducibility. The superior performance of the fabricated biosensor is attributed to the effective covalent immobilization of Hb on the newly developed highly conducting and biocompatible NIBA-IL/MWCNT/GCE platform.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanotubos de Carbono , Ácido Butírico , Catálise , Eletroquímica , Eletrodos , Compostos Férricos , Hemoglobinas , Peróxido de Hidrogênio , Reprodutibilidade dos Testes
7.
J Colloid Interface Sci ; 588: 221-231, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418440

RESUMO

Ionic liquids are regarded as one of the most prodigious materials for sustainable technological developments with superior performance and versatility. Hence, in this study, we have reported the design and synthesis of electroactive disubstituted ferrocenyl ionic liquids (Fc-ILs) with two different counter anions and demonstrated the significance of their anion tuneable physicochemical characteristics towards multifunctional electrochemical applications. The Fc-IL synthesized with chloride counter anion (Fc-Cl-IL) displays water-solubility and can be used as a redox additive in the fabrication of supercapacitor. Supercapacitor device with Fc-Cl-IL based redox electrolyte exhibits outstanding energy and power densities of 91 Wh kg-1 and 20.3 kW kg-1, respectively. Meanwhile, ferrocenyl IL synthesized with perchlorate anion (Fc-ClO4-IL) exhibits water-insolubility and can serve as a redox mediator towards construction of a glucose biosensor. The biosensor comprising Fc-ClO4-IL is able to detect glucose at an exceptionally lower potential of 0.2 V, with remarkable sensitivity and selectivity. This study implies that the introduction of electroactive ILs could afford supercapacitor devices with high energy and power densities and biosensors with less detection potential.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Eletrólitos , Glucose , Solubilidade
8.
ACS Biomater Sci Eng ; 6(11): 6076-6085, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33449637

RESUMO

Creation of interfaces with a prudent design for the immobilization of biomolecules is substantial in the construction of biosensors for real-time monitoring. Herein, an adept biosensing interface was developed using a nanoconjugated matrix and has been employed toward the electrochemical determination of hydrogen peroxide (H2O2). The anionic gold nanoparticle (AuNP) was electrostatically tethered to cationic redox ionic liquid (IL), to which the horseradish peroxidase (HRP) enzyme was covalently immobilized to form a nanobioconjugate. The anthracene-substituted, aldehyde-functionalized redox IL (CHO-AIL) was judiciously designed with the (i) imidazolium cation for electrostatic interaction with AuNPs, (ii) anthracene moiety to mediate the electron transfer, and (iii) free aldehydic group for covalent bonding with a free amine group of the enzyme. Thus, the water-soluble HRP is effectively bonded to the CHO-AIL on a glassy carbon electrode (GCE) via imine bond formation, which resulted in the formation of the HRP-CHO-AIL/GCE. Electrochemical investigations on the HRP-CHO-AIL/GCE reveal highly stable and distinct redox peaks for the anthracene/anthracenium couple at a formal potential (E°') of -0.47 V. Electrostatic tethering of anionic AuNPs to the HRP-CHO-AIL promotes the electron transfer process in the HRP-CHO-AIL/AuNPs/GCE, as observed by the reduction in the formal potential to -0.42 V along with the enhancement in peak currents. The HRP-CHO-AIL/AuNPs/GCE has been explored toward the electrocatalytic detection of H2O2, and the modified electrode demonstrated a linear response toward H2O2 in the concentration range of 0.02-2.77 mM with a detection limit of 3.7 µM. The developed biosensor ascertained predominant selectivity and sensitivity in addition to remarkable stability and reproducibility, corroborating the suitableness of the platform for the effectual biosensing of H2O2. The eminent performance realized with our biosensor setup is ascribed to the multifunctional efficacy of this newly designed nanobioconjugate.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Enzimas Imobilizadas/metabolismo , Ouro , Peróxido de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes
9.
Anal Chim Acta ; 1138: 89-98, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33161988

RESUMO

Herein, a water insoluble viologen functionalized ionic liquid (Vio-IL) was designed for the simultaneous electrochemical detection of 2-nitrophenol and 4-nitrophenol. Carboxyl functionalized benzimidazolium based ILs were hierarchically synthesized and the water insoluble carboxylic IL was covalently attached with aminopropylmethyl viologen through DCC coupling to obtain water insoluble Vio-IL gel. Vio-IL was immobilized by simple dropcasting over a multiwalled carbon nanotube deposited screen printed carbon electrode to obtain Vio-IL/MWCNT/SPE. The Vio-IL/MWCNT/SPE exhibited two sets of well-resolved redox peaks corresponding to V2+ to V+• and V+• to V0 redox couple. Furthermore, Vio-IL/MWCNT/SPE has shown excellent electrocatalytic activity towards the reduction of 2- and 4-nitrophenol individually, and also for the simultaneous determination of 2- and 4-nitrophenol. The linear range, sensitivity and detection limit for simultaneous detection of 2-nitrophenol at Vio-IL/MWCNT/SPE were found to be 4-494 µM, 0.884 µA µM-1 cm-2, 1.5 µM and that for 4-nitrophenol were 2-259 µM, 2.615 µA µM-1 cm-2, 0.70 µM. The Vio-IL/MWCNT/SPE established excellent sensitivity and selectivity towards the simultaneous determination of 2- and 4-nitrophenol together with impressive stability and reproducibility. The exemplary analytical parameters achieved are due to the rational immobilization of the mediator covalently in the highly conducting IL/MWCNT backbone which maintained the mediator characteristics effectively.

10.
Int J Biol Macromol ; 163: 358-365, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634514

RESUMO

Facile yet simple platforms for the immobilization of biomolecules have always been a substantial requirement for the fabrication of proficient biosensors. In this study, we report a naphthyl substituted acetate functionalized ionic liquid (NpAc-IL) for the covalent anchoring of horseradish peroxidase (HRP), using which the direct electrochemistry of HRP was successfully accomplished and a H2O2 biosensor was developed. The naphthyl substitution on the NpAc-IL was utilized for the π-π stacking with the MWCNT modified GCE and the terminal -OCH3 group of NpAc-IL was used for the covalent attachment with the free -NH2 group of HRP via amide bond formation. High conducting nature of the newly designed ionic liquid (NpAc-IL), facilitated an improved communication with the deeply buried redox centre of the HRP, while the covalent bonding provided enhanced stability to the fabricated biosensor by stably holding the water soluble HRP enzyme on the electrode surface. Furthermore, incorporation of MWCNT on the sensor setup synergistically enhanced the sensitivity of the developed biosensor. Under optimized conditions, the fabricated biosensor showed an enhanced electrocatalytic reduction of H2O2 in the range of 0.01 to 2.07 mM with a limit of detection and sensitivity of 2.7 µM and 55.98 µA mM-1 cm-2 respectively. Further, the proposed biosensor was utilized for the sensing of H2O2 spiked in real samples. Moreover, the newly fabricated biosensor demonstrated excellent stability with improved sensitivity and selectivity towards H2O2 reduction. The superior analytical characteristics are attributed to the facile fabrication strategy using this newly developed acetate functionalized ionic liquid platform.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio/química , Líquidos Iônicos/química , Nanotubos de Carbono/química , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletroquímica/métodos , Enzimas Imobilizadas , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Sci Rep ; 9(1): 10428, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320717

RESUMO

Herein, we have designed and demonstrated a facile and effective platform for the covalent anchoring of a tetrameric hemoprotein, hemoglobin (Hb). The platform comprises of naphthyl substituted amine functionalized gel type hydrophobic ionic liquid (NpNH2-IL) through which the heme protein was covalently attached over a glassy carbon electrode (Hb-NpNH2-IL/GCE). UV-vis and FT-IR spectral results confirmed that the Hb on NpNH2-IL retains its native structure, even after being covalently immobilized on NpNH2-IL platform. The direct electron transfer of redox protein could be realized at Hb-NpNH2-IL/GCE modified electrode and a well resolved redox peak with a formal potential of -0.30 V and peak separation of 65 mV was observed. This is due to the covalent attachment of highly conducting NpNH2-IL to the Hb, which facilitates rapid shuttling of electrons between the redox site of protein and the electrode. Further, the fabricated biosensor favoured the electrochemical reduction of bromate in neutral pH with linearity ranging from 12 to 228 µM and 0.228 to 4.42 mM with a detection limit and sensitivities of 3 µM, 430.7 µA mM-1 cm-2 and 148.4 µA mM-1 cm-2 respectively. Notably, the fabricated biosensor showed good operational stability under static and dynamic conditions with high selectivity and reproducibility.


Assuntos
Aminas/química , Hemoglobinas/química , Proteínas Imobilizadas/química , Líquidos Iônicos/química , Técnicas Biossensoriais/métodos , Carbono/química , Catálise , Técnicas Eletroquímicas/métodos , Eletroquímica/métodos , Eletrodos , Elétrons , Oxirredução , Reprodutibilidade dos Testes
12.
Biosens Bioelectron ; 103: 104-112, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29288883

RESUMO

An aldehyde functionalized ionic liquid, (3-(3-formyl-4-hydroxybenzyl)-3-methylimidazolium hexafluorophosphate) (CHO-IL) has been employed herein as a multiple host platform for the covalent immobilization of mediator as well as enzyme. The CHO-IL was immobilized on electrochemically reduced graphene oxide (ERGO) through the π-π stacking of hydroxybenzyl and imidazolium groups with ERGO and subjected to further covalent attachment of Azure A (Azu-A) mediator or glucose oxidase (GOx) enzyme. Electroactive, water soluble organic dye Azu-A was effectively immobilized to the host IL through simple Schiff base reaction. Azu-A was rendered leak-free in the electrode setup and also responded well for the amperometric determination of H2O2 over a linear range of 0.03-1mM with a detection limit and sensitivity of 11.5µM and 133.2µAmM-1cm-2, respectively. Further, attempts were made to explore the CHO-IL platform for the covalent immobilization of GOx enzyme which served well in retaining the enzyme nativity, reactivity and stability. Under optimized conditions, mediatorless GOx biosensor developed based on direct electrochemistry has exhibited an impressive analytical signal towards glucose detection in the linear range of 0.05-2.4mM with a detection limit and sensitivity of 17µM and 17.7µAmM-1cm-2, respectively. The reliability of the proposed Azu-A based chemical sensor and GOx based biosensor towards the determination of H2O2 and glucose in the real samples have been demonstrated. The remarkable analytical parameters and long term stability of both the sensors could be envisioned as a result of facile immobilization platform and immobilization strategy.


Assuntos
Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Grafite/química , Líquidos Iônicos/química , Aldeídos/química , Eletroquímica , Peróxido de Hidrogênio/química , Íons/química , Limite de Detecção , Oxirredução
13.
Biosens Bioelectron ; 91: 380-387, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28061420

RESUMO

The development of efficient and cost effective nonenzymatic biosensors with remarkable sensitivity, selectivity and stability for the detection of biomolecules, especially glucose is one of the major challenges in materials- and electrochemistry. Herein, we report the design and preparation of nonenzymatic biosensor based on an ionic liquid tagged cobalt-salophen metal complex (Co-salophen-IL) immobilized on electrochemically reduced graphene oxide (ERGO) for the detection of glucose via an electrochemical oxidation. The bioinspired Co-salophen-IL complex has been synthesized and immobilized on ERGO, which was previously deposited on a screen printed carbon electrode (SPE) to form the Co-salophen-IL/ERGO/SPE nonenzymatic biosensor. The electrochemical behaviour of this modified electrode was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Notably, the Co-salophen-IL/ERGO/SPE biosensor exhibited excellent electrocatalytic activity towards glucose oxidation in 0.1M NaOH, based on which an amperometric sensor has been developed. The modified electrode has shown prominent performance towards glucose detection over a wide linear range from 0.2µM to 1.8mM with a detection limit and sensitivity of 0.79µM and 62µAmM-1 respectively. The detection was carried out at 0.40V and such a less working potential excludes the interference from the coexisting oxidizable analytes. The role of Co-salophen, IL and ERGO in the electrocatalytic activity has been systematically investigated. Furthermore, the biosensor demonstrated high stability with good reproducibility.


Assuntos
Cobalto/química , Técnicas Eletroquímicas/métodos , Glucose/análise , Grafite/química , Líquidos Iônicos/química , Salicilatos/química , Catálise , Limite de Detecção , Oxirredução , Óxidos/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA