Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(5): 825-832, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636509

RESUMO

Next-generation sequencing has revolutionized the speed of rare disease (RD) diagnoses. While clinical exome and genome sequencing represent an effective tool for many RD diagnoses, there is room to further improve the diagnostic odyssey of many RD patients. One recognizable intervention lies in increasing equitable access to genomic testing. Rural communities represent a significant portion of underserved and underrepresented individuals facing additional barriers to diagnosis and treatment. Primary care providers (PCPs) at local clinics, though sometimes suspicious of a potential benefit of genetic testing for their patients, have significant constraints in pursuing it themselves and rely on referrals to specialists. Yet, these referrals are typically followed by long waitlists and significant delays in clinical assessment, insurance clearance, testing, and initiation of diagnosis-informed care management. Not only is this process time intensive, but it also often requires multiple visits to urban medical centers for which distance may be a significant barrier to rural families. Therefore, providing early, "direct-to-provider" (DTP) local access to unrestrictive genomic testing is likely to help speed up diagnostic times and access to care for RD patients in rural communities. In a pilot study with a PCP clinic in rural Kansas, we observed a minimum 5.5 months shortening of time to diagnosis through the DTP exome sequencing program as compared to rural patients receiving genetic testing through the "traditional" PCP-referral-to-specialist scheme. We share our experience to encourage future partnerships beyond our center. Our efforts represent just one step in fostering greater diversity and equity in genomic studies.


Assuntos
Testes Genéticos , Genômica , Acessibilidade aos Serviços de Saúde , Doenças Raras , População Rural , Humanos , Testes Genéticos/métodos , Doenças Raras/genética , Doenças Raras/diagnóstico , Genômica/métodos , Criança , Masculino , Sequenciamento de Nucleotídeos em Larga Escala , Feminino
2.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503299

RESUMO

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Assuntos
Epilepsia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Canais de Potássio Shab , Animais , Humanos , Potenciais de Ação , Epilepsia/genética , Neurônios , Oócitos , Xenopus laevis , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Transtornos do Neurodesenvolvimento/genética
3.
Am J Hum Genet ; 110(2): 240-250, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669496

RESUMO

Spinal muscular atrophy, a leading cause of early infant death, is caused by bi-allelic mutations of SMN1. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2. Both genes have variable copy numbers across populations. Furthermore, without pedigree information, it is currently not possible to identify silent carriers (2+0) with two copies of SMN1 on one chromosome and zero copies on the other. We developed Paraphase, an informatics method that identifies full-length SMN1 and SMN2 haplotypes, determines the gene copy numbers, and calls phased variants using long-read PacBio HiFi data. The SMN1 and SMN2 copy-number calls by Paraphase are highly concordant with orthogonal methods (99.2% for SMN1 and 100% for SMN2). We applied Paraphase to 438 samples across 5 ethnic populations to conduct a population-wide haplotype analysis of these highly homologous genes. We identified major SMN1 and SMN2 haplogroups and characterized their co-segregation through pedigree-based analyses. We identified two SMN1 haplotypes that form a common two-copy SMN1 allele in African populations. Testing positive for these two haplotypes in an individual with two copies of SMN1 gives a silent carrier risk of 88.5%, which is significantly higher than the currently used marker (1.7%-3.0%). Extending beyond simple copy-number testing, Paraphase can detect pathogenic variants and enable potential haplotype-based screening of silent carriers through statistical phasing of haplotypes into alleles. Future analysis of larger population data will allow identification of more diverse haplotypes and genetic markers for silent carriers.


Assuntos
Atrofia Muscular Espinal , Lactente , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Mutação , Dosagem de Genes , Linhagem , Análise de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
4.
Am J Hum Genet ; 110(8): 1414-1435, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541189

RESUMO

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética
5.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
6.
PLoS Genet ; 19(6): e1010796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315079

RESUMO

Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.


Assuntos
Cílios , Ciliopatias , Humanos , Animais , Camundongos , Cílios/genética , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas/genética , Aminoácidos/metabolismo , Mamíferos/metabolismo , Proteínas do Citoesqueleto/genética
7.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
8.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202563

RESUMO

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Assuntos
Histonas , Peixe-Zebra , Animais , Cromatina , DNA , Histonas/metabolismo , Humanos , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Brain ; 147(5): 1751-1767, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128568

RESUMO

BLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T>C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A>C (p.Thr66Pro) and c.124T>C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.


Assuntos
Lisossomos , Doenças Neurodegenerativas , Humanos , Lisossomos/metabolismo , Lisossomos/genética , Feminino , Masculino , Doenças Neurodegenerativas/genética , Animais , Lactente , Pré-Escolar , Criança , Peixe-Zebra , Linhagem , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Alelos , Mutação de Sentido Incorreto/genética
10.
J Pediatr ; : 114180, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972567

RESUMO

To evaluate a novel candidate disease gene, we engaged international collaborators and identified rare, biallelic, specifically homozygous, loss of function variants in SENP7 in four children from three unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia, intermittent neutropenia, and ultimately death in infancy for all four patients. SENP7 is a sentrin-specific protease involved in posttranslational modification of proteins essential for cell regulation, via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may represent a novel mechanism of primary immunodeficiency.

11.
Clin Genet ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988293

RESUMO

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.

12.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043503

RESUMO

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Humanos , Mutação/genética , Síndrome , Deficiência Intelectual/genética , Ataxia Cerebelar/genética , Fenótipo , Espasticidade Muscular/genética , Cátions , ATPase Trocadora de Sódio-Potássio/genética
13.
J Med Genet ; 60(6): 587-596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379543

RESUMO

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Assuntos
Sistema Cardiovascular , Sistema Urinário , Gravidez , Feminino , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Variações do Número de Cópias de DNA , Morfolinos , Sistema Urinário/anormalidades , Sistema Nervoso Central
14.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197783

RESUMO

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , RNA Polimerase III/genética , Padrões de Herança , RNA Polimerases Dirigidas por DNA/genética
15.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
16.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232675

RESUMO

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Genet Med ; 25(11): 100950, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551667

RESUMO

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Micrognatismo , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Face , Micrognatismo/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Fácies , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
18.
Genet Med ; 25(5): 100020, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718845

RESUMO

PURPOSE: This study aimed to assess the amount and types of clinical genetic testing denied by insurance and the rate of diagnostic and candidate genetic findings identified through research in patients who faced insurance denials. METHODS: Analysis consisted of review of insurance denials in 801 patients enrolled in a pediatric genomic research repository with either no previous genetic testing or previous negative genetic testing result identified through cross-referencing with insurance prior-authorizations in patient medical records. Patients and denials were also categorized by type of insurance coverage. Diagnostic findings and candidate genetic findings in these groups were determined through review of our internal variant database and patient charts. RESULTS: Of the 801 patients analyzed, 147 had insurance prior-authorization denials on record (18.3%). Exome sequencing and microarray were the most frequently denied genetic tests. Private insurance was significantly more likely to deny testing than public insurance (odds ratio = 2.03 [95% CI = 1.38-2.99] P = .0003). Of the 147 patients with insurance denials, 53.7% had at least 1 diagnostic or candidate finding and 10.9% specifically had a clinically diagnostic finding. Fifty percent of patients with clinically diagnostic results had immediate medical management changes (5.4% of all patients experiencing denials). CONCLUSION: Many patients face a major barrier to genetic testing in the form of lack of insurance coverage. A number of these patients have clinically diagnostic findings with medical management implications that would not have been identified without access to research testing. These findings support re-evaluation of insurance carriers' coverage policies.


Assuntos
Genômica , Cobertura do Seguro , Criança , Humanos
19.
Am J Med Genet A ; 191(1): 259-264, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301021

RESUMO

De novo variants in FOXP4 were recently associated with a neurodevelopmental disorder characterized by speech and language delay, growth abnormalities, hypotonia, and variable congenital abnormalities, including congenital diaphragmatic hernia, cervical spine abnormalities, strabismus, cryptorchidism, and ptosis. The variant spectrum in this small cohort was limited to de novo missense except for one frameshift, the inheritance of which was unknown. Variants tested in vitro exhibited reduced repressor transcriptional activity, indicating loss of function is the likely mechanism of disease, but only one frameshift variant was reported. Here, we report four affected individuals from two unrelated families heterozygous for a nonsense variant, c.1893C > G, p.Tyr631*, in FOXP4. The phenotype of the affected children includes developmental delay, feeding difficulties in infancy, and similar facial features. In both cases, the variant was inherited from a parent with mild or even subclinical features. Interestingly, one patient presented with congenital diaphragmatic hernia, as reported in two other FOXP4 patients. This report implicates FOXP4 truncating variants in human disease and highlights the wide phenotypic spectrum and variable expressivity.


Assuntos
Fatores de Transcrição Forkhead , Hérnias Diafragmáticas Congênitas , Transtornos do Neurodesenvolvimento , Criança , Humanos , Masculino , Fatores de Transcrição Forkhead/genética , Mutação da Fase de Leitura , Hérnias Diafragmáticas Congênitas/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Fenótipo
20.
Hum Mutat ; 43(3): 389-402, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961992

RESUMO

Diamond-Blackfan anemia is a rare genetic disease characterized by erythroblastopenia and a large spectrum of developmental anomalies. The vast majority of the cases genetically described are linked to heterozygous pathogenic variants in more than 20 ribosomal protein genes. Here we report an atypical clinical case of DBA associated with a missense variant in RPL8, which encodes RPL8/uL2, a protein of the 60S large ribosomal subunit. RPL8 has been previously implicated as a candidate disease gene in one patient with DBA bearing another type of missense variant; however, evidence for pathogenicity was limited to computational tools. Using functional studies in lymphoblastoid cells as well as yeast models, we show that the RPL8 variants detected in these two patients encode functionally deficient proteins that affect ribosome production and are therefore likely pathogenic. We propose to include RPL8 in the list of DBA-associated genes.


Assuntos
Anemia de Diamond-Blackfan , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/genética , Humanos , Mutação , Fenótipo , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA