Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(6): 1057-1074.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362324

RESUMO

Tissue-resident and recruited macrophages contribute to both host defense and pathology. Multiple macrophage phenotypes are represented in diseased tissues, but we lack deep understanding of mechanisms controlling diversification. Here, we investigate origins and epigenetic trajectories of hepatic macrophages during diet-induced non-alcoholic steatohepatitis (NASH). The NASH diet induced significant changes in Kupffer cell enhancers and gene expression, resulting in partial loss of Kupffer cell identity, induction of Trem2 and Cd9 expression, and cell death. Kupffer cell loss was compensated by gain of adjacent monocyte-derived macrophages that exhibited convergent epigenomes, transcriptomes, and functions. NASH-induced changes in Kupffer cell enhancers were driven by AP-1 and EGR that reprogrammed LXR functions required for Kupffer cell identity and survival to instead drive a scar-associated macrophage phenotype. These findings reveal mechanisms by which disease-associated environmental signals instruct resident and recruited macrophages to acquire distinct gene expression programs and corresponding functions.


Assuntos
Microambiente Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Biomarcadores , Sequenciamento de Cromatina por Imunoprecipitação , Dieta , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Ligação Proteica , Transdução de Sinais , Análise de Célula Única
2.
Immunity ; 51(4): 655-670.e8, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31587991

RESUMO

Tissue environment plays a powerful role in establishing and maintaining the distinct phenotypes of resident macrophages, but the underlying molecular mechanisms remain poorly understood. Here, we characterized transcriptomic and epigenetic changes in repopulating liver macrophages following acute Kupffer cell depletion as a means to infer signaling pathways and transcription factors that promote Kupffer cell differentiation. We obtained evidence that combinatorial interactions of the Notch ligand DLL4 and transforming growth factor-b (TGF-ß) family ligands produced by sinusoidal endothelial cells and endogenous LXR ligands were required for the induction and maintenance of Kupffer cell identity. DLL4 regulation of the Notch transcriptional effector RBPJ activated poised enhancers to rapidly induce LXRα and other Kupffer cell lineage-determining factors. These factors in turn reprogrammed the repopulating liver macrophage enhancer landscape to converge on that of the original resident Kupffer cells. Collectively, these findings provide a framework for understanding how macrophage progenitor cells acquire tissue-specific phenotypes.


Assuntos
Células de Kupffer/fisiologia , Fígado/metabolismo , Macrófagos/fisiologia , Células Mieloides/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Reprogramação Celular , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/citologia , Receptores X do Fígado/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
3.
Mol Cell ; 72(2): 316-327.e5, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340023

RESUMO

Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11ß2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.


Assuntos
Cílios/efeitos dos fármacos , Cílios/metabolismo , Oxisteróis/farmacologia , Animais , Linhagem Celular , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos
4.
Circulation ; 147(5): 388-408, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36416142

RESUMO

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Aterosclerose/patologia , Hidroxicolesteróis/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamação/metabolismo , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34521750

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin dryness, inflammation, and itch. A major hallmark of AD is an elevation of the immune cytokines IL-4 and IL-13. These cytokines lead to skin barrier disruption and lipid abnormalities in AD, yet the underlying mechanisms are unclear. Sebaceous glands are specialized sebum-producing epithelial cells that promote skin barrier function by releasing lipids and antimicrobial proteins to the skin surface. Here, we show that in AD, IL-4 and IL-13 stimulate the expression of 3ß-hydroxysteroid dehydrogenase 1 (HSD3B1), a key rate-limiting enzyme in sex steroid hormone synthesis, predominantly expressed by sebaceous glands in human skin. HSD3B1 enhances androgen production in sebocytes, and IL-4 and IL-13 drive lipid abnormalities in human sebocytes and keratinocytes through HSD3B1. Consistent with our findings in cells, HSD3B1 expression is elevated in the skin of AD patients and can be restored by treatment with the IL-4Rα monoclonal antibody, Dupilumab. Androgens are also elevated in a mouse model of AD, though the mechanism in mice remains unclear. Our findings illuminate a connection between type 2 immunity and sex steroid hormone synthesis in the skin and suggest that abnormalities in sex steroid hormone synthesis may underlie the disrupted skin barrier in AD. Furthermore, targeting sex steroid hormone synthesis pathways may be a therapeutic avenue to restoring normal skin barrier function in AD patients.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Pele/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Células HaCaT , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/metabolismo , Pele/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782454

RESUMO

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Assuntos
Aterosclerose/tratamento farmacológico , Desmosterol/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Vasos Coronários , Células Espumosas/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteróis/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(16): 7957-7962, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923116

RESUMO

Diffuse intrinsic pontine glioma (DIPG) remains an incurable childhood brain tumor for which novel therapeutic approaches are desperately needed. Previous studies have shown that the menin inhibitor MI-2 exhibits promising activity in preclinical DIPG and adult glioma models, although the mechanism underlying this activity is unknown. Here, using an integrated approach, we show that MI-2 exerts its antitumor activity in glioma largely independent of its ability to target menin. Instead, we demonstrate that MI-2 activity in glioma is mediated by disruption of cholesterol homeostasis, with suppression of cholesterol synthesis and generation of the endogenous liver X receptor ligand, 24,25-epoxycholesterol, resulting in cholesterol depletion and cell death. Notably, this mechanism is responsible for MI-2 activity in both DIPG and adult glioma cells. Metabolomic and biochemical analyses identify lanosterol synthase as the direct molecular target of MI-2, revealing this metabolic enzyme as a vulnerability in glioma and further implicating cholesterol homeostasis as an attractive pathway to target in this malignancy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Tronco Encefálico , Glioma , Transferases Intramoleculares/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neoplasias do Tronco Encefálico/enzimologia , Neoplasias do Tronco Encefálico/metabolismo , Colesterol/metabolismo , Glioma/enzimologia , Glioma/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(20): E4680-E4689, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632203

RESUMO

Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of sterol regulatory element-binding protein (SREBP)1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c-induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in the liver that lead to hypertriglyceridemia.


Assuntos
Biomimética , Desmosterol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Receptores X do Fígado/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
9.
J Am Chem Soc ; 142(13): 6128-6138, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163279

RESUMO

TASIN (Truncated APC-Selective Inhibitors) compounds are selectively toxic to colorectal cancer cells with APC mutations, although their mechanism of action remains unknown. Here, we found that TASINs inhibit three enzymes in the postsqualene cholesterol biosynthetic pathway including EBP, DHCR7, and DHCR24. Even though all three of these enzymes are required for cholesterol biosynthesis, only inhibition of the most upstream enzyme, EBP, led to cancer cell death via depletion of downstream sterols, an observation that was confirmed by genetic silencing of EBP. Pharmacologic inhibition or genetic silencing of either DHCR7 or DHCR24 had no impact on cell viability. By using photoaffinity probes to generate a relationship between chemical structure and probe competition, we identified compounds that selectively inhibit either EBP or DHCR7. These studies identify EBP, but not downstream enzymes in the cholesterol biosynthetic pathway, as a target in APC mutant colorectal cancer and also have implications for the clinical development of highly selective EBP inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Esteroide Isomerases/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/genética , Antineoplásicos/química , Vias Biossintéticas/efeitos dos fármacos , Colesterol/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/química , Células HCT116 , Humanos , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Esteroide Isomerases/metabolismo
10.
J Pharmacol Exp Ther ; 375(2): 367-375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913007

RESUMO

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.


Assuntos
Neuralgia/metabolismo , Oxisteróis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Medula Espinal/metabolismo , Animais , Feminino , Células HL-60 , Humanos , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Medula Espinal/patologia
11.
J Lipid Res ; 60(3): 694-706, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610084

RESUMO

An unbiased sample preparation free of interferents (i.e., competing analytes, detergents, plastics) is critical to any lipid MS workflow. Here we present a novel three-phase lipid extraction (3PLE) technique using a single-step liquid-liquid extraction (LLE) that allows both extraction and fractionation of lipids by polarity. 3PLE is composed of one aqueous and two organic phases. The upper organic phase is enriched in neutral lipids (triacylglycerols and cholesteryl esters), while the middle organic phase contains the major glycerophospholipids. Thin-layer chromatography, radioactive labeling, and MS were used to confirm lipid partitioning. 3PLE efficiency was demonstrated for bovine liver, human pooled plasma, mouse liver, mouse brain, and mouse white adipose tissue. Compared with the gold-standard Bligh/Dyer LLE, 3PLE showed significant advantages. For direct-infusion workflows, there was a decrease in ion suppression with a corresponding increased number of lipid species identified. For LC/MS workflows, increased signal intensities were observed for lower-abundance lipid species such as phosphatidic acid and phosphatidylserine. 3PLE also proved to be a valuable tool for fatty acid profiling by GC/MS, allowing for the separate identification of neutral and polar fatty acids.


Assuntos
Lipidômica/métodos , Extração Líquido-Líquido/métodos , Animais , Bovinos , Humanos , Camundongos , Fatores de Tempo , Fluxo de Trabalho
12.
Proc Natl Acad Sci U S A ; 111(38): E4006-14, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201972

RESUMO

An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.


Assuntos
Índice de Massa Corporal , Loci Gênicos/fisiologia , Genótipo , Hidroxicolesteróis/sangue , Esteroide Hidroxilases , Vitamina D/sangue , Feminino , Humanos , Masculino , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Vitamina D/genética
13.
Methods Mol Biol ; 2785: 221-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427197

RESUMO

Recent research has revealed the potential of lipidomics and metabolomics in identifying new biomarkers and mechanistic insights for neurodegenerative disorders. To contribute to this promising area, we present a detailed protocol for conducting an integrated lipidomic and metabolomic profiling of brain tissue and biofluid samples. In this method, a single-phase methanol extraction is employed for extracting both nonpolar and highly polar lipids and metabolites from each biological sample. The extracted samples are then subjected to liquid chromatography-mass spectrometry-based assays to provide relative or semiquantitative measurements for hundreds of selected lipids and metabolites per sample. This high-throughput approach enables the generation of new hypotheses regarding the mechanistic and functional significance of lipid and metabolite alterations in neurodegenerative disorders while also facilitating the discovery of new biomarkers to support drug development.


Assuntos
Lipidômica , Doenças Neurodegenerativas , Humanos , Cromatografia Líquida/métodos , Lipídeos , Metabolômica/métodos , Biomarcadores/metabolismo , Encéfalo/metabolismo
14.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131734

RESUMO

Progranulin (PGRN) deficiency is linked to neurodegenerative diseases including frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and neuronal ceroid lipofuscinosis. Proper PGRN levels are critical to maintain brain health and neuronal survival, however the function of PGRN is not well understood. PGRN is composed of 7.5 tandem repeat domains, called granulins, and is proteolytically processed into individual granulins inside the lysosome. The neuroprotective effects of full-length PGRN are well-documented, but the role of granulins is still unclear. Here we report, for the first time, that expression of single granulins is sufficient to rescue the full spectrum of disease pathology in mice with complete PGRN deficiency (Grn-/-). Specifically, rAAV delivery of either human granulin-2 or granulin-4 to Grn-/- mouse brain ameliorates lysosome dysfunction, lipid dysregulation, microgliosis, and lipofuscinosis similar to full-length PGRN. These findings support the idea that individual granulins are the functional units of PGRN, likely mediate neuroprotection within the lysosome, and highlight their importance for developing therapeutics to treat FTD-GRN and other neurodegenerative diseases.

15.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821369

RESUMO

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets. Here, using Ch25h-/- mice and exogenous 25HC in lung injury models, we provide evidence that 25HC sustains proinflammatory cytokines in the airspace and augments lung injury, at least in part, by inducing LXR-independent endoplasmic reticulum stress and endothelial leak. Suggesting an autocrine effect in endothelium, inhaled LPS upregulates pulmonary endothelial Ch25h, and non-hematopoietic Ch25h deletion is sufficient to confer lung protection. In patients with acute respiratory distress syndrome, airspace 25HC and alveolar macrophage CH25H were associated with markers of microvascular leak, endothelial activation, endoplasmic reticulum stress, inflammation, and clinical severity. Taken together, our findings suggest that 25HC deriving from and acting on different cell types in the lung communicates distinct, temporal LXR-independent and -dependent signals to regulate inflammatory homeostasis.


Assuntos
Lesão Pulmonar Aguda , Hidroxicolesteróis , Animais , Camundongos , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
16.
Proc Natl Acad Sci U S A ; 106(39): 16764-9, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805370

RESUMO

25-Hydroxycholesterol is produced in mammalian tissues. The function of this oxysterol is unknown. Here we describe a central role for 25-hydroxycholesterol in regulating the immune system. In initial experiments, we found that stimulation of macrophage Toll-like receptors (TLR) induced expression of cholesterol 25-hydroxylase and the synthesis of 25-hydroxycholesterol. Treatment of naïve B cells with nanomolar concentrations of 25-hydroxycholesterol suppressed IL-2-mediated stimulation of B cell proliferation, repressed activation-induced cytidine deaminase (AID) expression, and blocked class switch recombination, leading to markedly decreased IgA production. Consistent with these findings, deletion of the mouse cholesterol 25-hydroxylase gene caused an increase in serum IgA. Conversely, inactivation of the CYP7B1 oxysterol 7alpha-hydroxylase, which degrades 25-hydroxycholesterol, decreased serum IgA. The suppression of IgA class switching in B cells by a macrophage-derived sterol in response to TLR activation provides a mechanism for local and systemic negative regulation of the adaptive immune response by the innate immune system.


Assuntos
Hidroxicolesteróis/metabolismo , Imunoglobulina A/biossíntese , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Linfócitos B/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Transgênicos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
17.
Transl Psychiatry ; 12(1): 139, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379782

RESUMO

Major depressive disorder (MDD) is a common, disabling, and heterogeneous condition that responds unpredictably to current treatments. We previously showed an association between depressive symptoms and plasma concentrations of two cholesterol precursors, desmosterol and 7-dehydrocholesterol (7DHC). Here, we measured total cholesterol and sterol concentrations with mass spectrometry in postmortem brain samples from depressed and control subjects. Mean (±SEM) desmosterol concentration was 8.9 ± 0.97 ng/mg in the depressed versus 10.7 ± 0.72 ng/mg in the control group. The mean of the posterior probability distribution for the difference in desmosterol concentration between the two groups was 2.36 (95% highest density interval [HDI] 0.59-4.17). Mean 7DHC concentrations, 12.5 ± 4.1 ng/mg in the depressed versus 5.4 ± 0.74 ng/mg in the control group, were unlikely to be different (95% HDI, [-1.37-0.34]). We found that presence of trazodone in the peri-mortem toxicology screen accounted for the observed difference in desmosterol concentrations. We also observed extremely high 7DHC levels in all 4 subjects who had taken trazodone. Trazodone has been recently found to inhibit 7-dehydrocholesterol reductase and alter sterol concentrations in rodents, cell culture, human fibroblasts, and blood. In this study, we demonstrate for the first time that trazodone alters human brain sterol composition. Given congenital deficiency of 7-dehydrocholesterol reductase results in Smith-Lemli-Opitz syndrome, our findings support the hypothesis that this commonly used medication may have previously unappreciated risks.


Assuntos
Transtorno Depressivo Maior , Trazodona , Encéfalo , Desidrocolesteróis , Desmosterol , Humanos , Trazodona/farmacologia
18.
J Clin Lipidol ; 16(3): 345-355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461764

RESUMO

BACKGOUND: Circulating oxysterols, cholesterol metabolites with important signaling functions, are increasingly being recognized as candidate biomarkers for several diseases, but associations with demographic and health characteristics remain poorly described. OBJECTIVE: This study aims to characterize associations of major circulating oxysterols with sex, age, race/ethnicity, body mass index (BMI), lifestyle factors, and use of common medications. METHODS: We measured plasma concentrations of 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC), 24(S)-hydroxycholesterol (24(S)-OHC), 7ɑ-hydroxycholesterol (7ɑ-OHC), and 4ß-hydroxycholesterol (4ß-OHC) from 1,440 participants of a completed clinical trial for the chemoprevention of colorectal adenomas. Adjusted percent difference in means were calculated using linear regression. RESULTS: Women had 18% (95% CI, 14%, 22%) lower 27-OHC and 21% (15%, 27%) higher 4ß-OHC than men. Blacks had 15% (7%, 23%) higher 4ß-OHC than Non-Hispanic Whites, and Asian or Pacific Islanders had 19% (2%, 35%) higher 7ɑ-OHC than Non-Hispanic Whites. Individuals of BMI ≥35 kg/m2 had 33% (25%, 41%) lower 4ß-OHC than those <25 kg/m2. Current smokers had 15% (5%, 24%) higher 7ɑ-OHC than never smokers, and daily alcohol drinkers had 17% (10%, 24%) higher 7ɑ-OHC than never drinkers. Statin use was associated with lower concentrations of all 5 oxysterols. Differences in mean <15% were found for characteristics such as age, total dietary energy intake, physical activity, diabetes, and anti-inflammatory drug use. CONCLUSION: Circulating oxysterols are uniquely associated with multiple demographic and health characteristics.


Assuntos
Diabetes Mellitus , Oxisteróis , Biomarcadores , Colesterol , Demografia , Feminino , Humanos , Masculino
19.
J Biol Chem ; 285(51): 39976-85, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20923771

RESUMO

We report the lipidomic response of the murine macrophage RAW cell line to Kdo(2)-lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug. Our studies provide a systems-level view of lipid metabolism and reveal significant connections between lipid and cell signaling and biochemical pathways that contribute to innate immune responses and to pharmacological perturbations.


Assuntos
Imunidade Inata , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/fisiologia , Mediadores da Inflamação/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Macrófagos/imunologia , Camundongos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
20.
Nat Commun ; 12(1): 6448, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750386

RESUMO

Intricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


Assuntos
Colesterol/metabolismo , Retroalimentação Fisiológica , Homeostase , Fígado/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular Tumoral , LDL-Colesterol/metabolismo , Perfilação da Expressão Gênica/métodos , Células HeLa , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA