Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; 19(48): e2304599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544920

RESUMO

Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.

2.
Opt Express ; 30(4): 5953-5972, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209567

RESUMO

As a high-precision fiber optic sensor, a single optical fiber Fabry Pérot interferometer (FFPI) sensor is often used to measure parameters such as temperature or strain. However, the use of combined FFPIs to measure multiple parameters simultaneously has rarely been reported. In this paper, a compact Tri-FFPI sensor consisting of three series-connected FFPIs is proposed to measure high temperature, high acceleration, and large strain. The total length and diameter of the sensing part are only 2558.9 µm and 250 µm, respectively. One of the FFPIs, FFPI-1, contains a cantilever beam structure to measure vibration acceleration. FFPI-2 is used to measure temperature and the temperature compensation of the strain measurement. FFPI-3 is used to measure strain. To ensure that the sensor has high measurement sensitivity, two demodulation methods are used: the light intensity demodulation method for vibration acceleration and the wavelength demodulation method for temperature and strain. The sensor is capable of withstanding ultrahigh temperatures up to 1000°C.

3.
Opt Express ; 29(13): 19605-19620, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266068

RESUMO

Multiplexed fiber optic Fabry-Perot interferometer (FPI) sensors are well known for their precision, simple construction, simpler wiring, and high sensing qualities. However, the limitations on existing demodulation methods degrade the measurement accuracy of multiplexed FPI sensors and necessitate large cavity length differences. In this paper, we propose an adaptive high-precision demodulation method based on vector matching and cluster-competitive particle swarm optimization (CCPSO), which transforms cavity length demodulation into searching for the global extreme. The proposed CCPSO, which uses agglomeration within clusters and competition between clusters simultaneously, enables the improvement of the global extreme search capabilities. The theoretical analysis and experimental results show that the proposed demodulation method decreases the lower limit of the needed cavity length differences to 22 µm, which is reduced by 76.9% compared with the fast Fourier transform-based method. An accuracy of 1.05 nm is achieved with a cavity length difference of 27.5 µm and a signal-to-noise ratio of 36.0 dB for the noise.

4.
Opt Express ; 29(3): 4422-4430, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771020

RESUMO

A few-mode fiber Bragg grating (FM-FBG) inscribed in a few-mode fiber (FMF) can maintain multiple reflection peaks due to the stable multiple modes in FMF. This paper studies the sensing characteristics of multiple reflection peaks for a four-mode FBG (4M-FBG) and innovatively proposes a joint-peak demodulation method based on one FM-FBG to reduce measurement error in temperature or strain sensing. This joint-peak demodulation method, theoretically explained and experimentally verified, provides the possibility of generating miniature sensors with high measurement accuracy and stable measurement performance. The potential of 4M-FBG for simultaneous measurement of strain and temperature is studied in this paper. By measuring the changes of wavelength and intensity of the reflection peaks, temperature and strain can be measured effectively.

5.
Sensors (Basel) ; 19(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426308

RESUMO

A combined sensor to simultaneously measure strain, vibration, and temperature has been developed. The sensor is composed of two Fiber Bragg gratings (FBGs) and a vibration gainer. One FBG is used to measure strain, while the other measures vibration and temperature. The gainer has a mass block which is used to increase its sensitivity to vibration. The main beam of the vibration gainer was designed as a trapezoid in order to reduce the strain gradient while sensing vibration. In addition, an interrogation method was used to eliminate interactions between measured parameters. Experiments were carried out to analyze the performance of the proposed sensor. For individual strain measurement in the range of 0-152 µÎµ, the sensitivity and nonlinearity error were 1.878 pm/µÎµ and 2.43% Full Scale (F.S.), respectively. For individual temperature measurement in the range of 50-210 °C, the sensitivity and nonlinearity error were 29.324 pm/°C and 1.88% F.S., respectively. The proposed sensor also demonstrated a sensitivity of 0.769 pm/m·s-2 and nonlinearity error of 1.83% F.S. for vibration measurement in the range of 10-55 m/s2. Finally, simultaneously measuring strain, temperature, and vibration resulted in nonlinearity errors of 4.23% F.S., 1.89% F.S., and 2.23% F.S., respectively.

6.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469408

RESUMO

An ordinary optical fiber ultra-high temperature sensor based on infrared radiation with the advantages of simple structure and compact is presented. The sensing system consists of a detection fiber and a common transmission fiber. The detector fiber is formed by annealing a piece of ordinary fiber at high temperature twice, which changes the properties of the fiber and breaks the temperature limit of ordinary fiber. The transmission fiber is a bending insensitive optical fiber. A static calibration system was set up to determine the performance of the sensor and three heating experiments were carried out. The temperature response sensitivities were 0.010 dBm/K, 0.009 dBm/K and 0.010 dBm/K, respectively, which indicate that the sensor has good repeatability. The sensor can withstand a high temperature of 1823 K for 58 h with an error of less than 1%. The main reason why the developed ordinary optical fiber sensor can work steadily for a long time at high temperature is the formation of ß-cristobalite, which is stable at high-temperature.

7.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115819

RESUMO

A temperature multipoint sensing system based on three cascade Mach⁻Zehnder interferometers (MZIs) is introduced. The MZIs with different lengths are fabricated based on waist-enlarged fiber bitapers. The fast Fourier transformation is applied to the overlapping transmission spectrum and the corresponding interference spectra can be obtained via the cascaded frequency spectrum based on the inverse Fourier transformation. By analyzing the drift of interference spectra, the temperature response sensitivities of 0.063 nm/°C, 0.071 nm/°C, and 0.059 nm/°C in different furnaces can be detected from room temperature up to 1000 °C, and the temperature response at different regions can be measured through the sensitivity matrix equation. These results demonstrate feasibility of multipoint measurement, which also support that the temperature sensing system provides new solution to the MZI cascade problem.

8.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494544

RESUMO

A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

9.
Sensors (Basel) ; 18(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570680

RESUMO

An In2O3/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In2O3/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In2O3 films increased with the increase in annealing time. The thermoelectric voltage of the In2O3/ITO thermocouple was 53.5 mV at 1270 °C at the hot junction. The average Seebeck coefficient of the thermocouple was calculated as 44.5 µV/°C. The drift rate of the In2O3/ITO thermocouple was 5.44 °C/h at a measuring time of 10 h at 1270 °C.

10.
Sensors (Basel) ; 17(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420088

RESUMO

A thermal stress range analysis of tungsten-rhenium thin film thermocouples based on ceramic substrates is presented to analyze the falling off and breakage problems caused by the mismatch of the thermal stresses in thin film thermocouples (TFTCs) and substrate, and nano-indentation experiments are done to measure and calculate the film stress to compare with the simulation results. Optimal design and fabrication of tungsten-rhenium TFTCs based on ceramic substrates is reported. Static high temperature tests are carried out, which show the optimization design can effectively reduce the damage caused by the thermal stress mismatch.

11.
Sensors (Basel) ; 16(10)2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27681734

RESUMO

In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out. Fabricated on an n-type single crystal silicon wafer, the sensor chips were wire-bonged to printed circuit boards (PCBs) and simply packaged for experiments. Finally, a vibration test was conducted. The results show that the proposed piezoelectric accelerometer has high sensitivity, low resonance frequency, and low transverse effect.

12.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276739

RESUMO

An intensity-demodulated fiber-optic magnetometer is proposed and experimentally investigated, which is fabricated via fusion splicing a segment of photonic crystal fiber (PCF) between single-mode fibers (SMFs), with the cladding air holes of PCF filled with magnetic fluid. Using the magneto-optical properties of the magnetic fluid, the transmission spectrum is changed with an external magnetic field. Based on the intensity variations in the transmission spectrum, the magnetic field is detected, and a sensitivity of 0.238 dB/mT is obtained at 1550.03 nm with the length of PCF 5.5 cm. By converting light signals into electrical signals, a sensitivity of 0.003 V/mT is achieved. The fiber-optic magnetometer possesses the advantages of simple fabrication, compact/robust structure, and low cost.

13.
Sensors (Basel) ; 13(10): 13178-91, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084112

RESUMO

Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.


Assuntos
Análise de Falha de Equipamento/instrumentação , Manometria/instrumentação , Sistemas Microeletromecânicos/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Fricção , Lubrificação , Microeletrodos , Estresse Mecânico
14.
Nanomaterials (Basel) ; 13(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686990

RESUMO

A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25-135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations.

15.
Nanomaterials (Basel) ; 13(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37999302

RESUMO

A co-sputtering process for the deposition of Fe0.8Ga0.2B alloy magnetostrictive thin films is studied in this paper. The soft magnetic performance of Fe0.8Ga0.2B thin films is modulated by the direct-current (DC) sputtering power of an FeGa target and the radio-frequency (RF) sputtering power of a B target. Characterization results show that the prepared Fe0.8Ga0.2B films are amorphous with uniform thickness and low coercivity. With increasing FeGa DC sputtering power, coercivity raises, resulting from the enhancement of magnetism and grain growth. On the other hand, when the RF sputtering power of the B target increases, the coercivity decreases first and then increases because of the conversion of the films from a crystalline to an amorphous state. The lowest coercivity of 7.51 Oe is finally obtained with the sputtering power of 20 W for the FeGa target and 60 W for the B target. Potentially, this optimization provides a simple way for improving the magnetoelectric coefficient of magnetoelectric composite materials and the sensitivity of magnetoelectric sensors.

16.
Nanomaterials (Basel) ; 13(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838999

RESUMO

GaN high-electron-mobility transistor (HEMT) terahertz (THz) detectors have been widely studied and applied in the past few decades. However, there are few reports about the influence of GaN/AlGaN heterostructure material properties on the detection model at present. In this paper, a response voltage model for a GaN HEMT THz detector that considers the carrier scattering in a GaN/AlGaN heterostructure is proposed. The phonon scattering, dislocation scattering, and interface roughness scattering mechanisms are taken into account in the classic THz response voltage model; furthermore, the influence of various material parameters on the response voltage is studied. In a low-temperature region, acoustic scattering plays an important role, and the response voltage drops with an increase in temperature. In a high temperature range, optical phonon scattering is the main scattering mechanism, and the detector operates in a non-resonant detection mode. With an increase in carrier surface density, the response voltage decreases and then increases due to piezoelectric scattering and optical phonon scattering. For dislocation and interface roughness scattering, the response voltage is inversely proportional to the dislocation density and root mean square roughness (RMS) but is positively related to lateral correlation length. Finally, a comparison between our model and the reported models shows that our proposed model is more accurate.

17.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763825

RESUMO

Here, we present a high-precision demodulation method that supports the arrayed waveguide grating (AWG) system, which includes a 1 × 8 AWG as the primary filter with a 0.5 nm channel spacing and a 1 × 4 AWG as the auxiliary filter with a 1 nm channel spacing. The high precision is achieved through an innovative method of decoupling three channels, involving two adjacent channels of the primary filter and one channel of the secondary auxiliary filter. Simulation results show that the AWGs have a good transmission spectrum with crosstalk below -24.8 dB, non-uniformities below 0.8 dB, insertion loss below -3.7 dB, 3 dB bandwidth of 0.25 nm, and 10 dB bandwidth of 0.43 nm. The interrogation precision can reach 8 pm, with a dynamic range of 0.4 nm, corresponding to a single FBG.

18.
Microsyst Nanoeng ; 9: 133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886351

RESUMO

With the growing demand for thermal management of electronic devices, cooling of high-precision instruments, and biological cryopreservation, heat flux measurement of complex surfaces and at ultralow temperatures has become highly imperative. However, current heat flux sensors (HFSs) are commonly used in high-temperature scenarios and have problems when applied in low-temperature conditions, such as low sensitivity and embrittlement. In this study, we developed a flexible and highly sensitive HFS that can operate at ultralow to high temperatures, ranging from -196 °C to 273 °C. The sensitivities of HFSs with thicknesses of 0.2 mm and 0.3 mm, which are efficiently manufactured by the screen-printing method, reach 11.21 µV/(W/m2) and 13.43 µV/(W/m2), respectively. The experimental results show that there is a less than 3% resistance change from bending to stretching. Additionally, the HFS can measure heat flux in both exothermic and absorptive cases and can measure heat flux up to 25 kW/m2. Additionally, we demonstrate the application of the HFS to the measurement of minuscule heat flux, such as heat dissipation of human skin and cold water. This technology is expected to be used in heat flux measurements at ultralow temperatures or on complex surfaces, which has great importance in the superconductor and cryobiology field.

19.
iScience ; 26(8): 107303, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520735

RESUMO

Flexible thin-film thermocouples (TFTCs) have been garnering interest as temperature sensors due to the advantages of being flexible, ultrathin, and ultralight. Additionally, they have fast response times and enable detection of temperature. These properties have made them suitable for applications such as wearable electronics, healthcare, portable personal devices, and smart detection systems. This review presents the progress in the development of flexible TFTCs. The mechanism, structural design, materials, fabrication methods, and related applications of flexible TFTCs are also elaborated. Finally, future development directions of flexible TFTCs are discussed such as wide-range temperature measurement, multiple sensor integration, and achieving reliable cold-end compensation systems.

20.
ACS Appl Mater Interfaces ; 15(23): 28465-28475, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256318

RESUMO

Conductive composite coatings are an important element in flexible electronics research and are widely used in energy transformation, artificial intelligence, and electronic skins. However, the comparatively low electrical conductivity limits their performance in many specific applications, such as electromagnetic interference (EMI) shielding and Joule heating devices. Therefore, the preparation of ultrahigh-electrical conductivity composite coatings with good flexibility and durability remains a great challenge. Herein, we fabricated multifunctional conductive composite coatings based on thiolated chitosan (TCS) and Ag nanoparticles (AgNPs) by an eco-friendly drop-coating method. The three-dimensional conductive network constructed by thermal sintering imparted the coating with an ultrahigh electrical conductivity of up to 67079.4 S/m. Moreover, the coating reinforced by Ag-S covalent bonding exhibits good stability, including heat resistance, chemical resistance, and mechanical stability. In addition, based on the ultrahigh electrical conductivity, the coating exhibits superior EMI shielding effectiveness and Joule heating capability. With 30 wt % of AgNPs in the coating, the EMI shielding effectiveness of the coating reaches 70.2 dB, far exceeding commercial standards. Additionally, the coating can quickly reach a saturation temperature (Ts) of 195.9 °C at a safe drive voltage of 3 V. These excellent performances demonstrate that the robust and flexible highly conductive composite coatings prepared by this method have attractive potential for EMI shielding and thermal management applications as well as in wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA