Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 32(3): 499-511, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210354

RESUMO

De novo mutations (DNMs) are important players in heritable diseases and evolution. Of particular interest are highly recurrent DNMs associated with congenital disorders that have been described as selfish mutations expanding in the male germline, thus becoming more frequent with age. Here, we have adapted duplex sequencing (DS), an ultradeep sequencing method that renders sequence information on both DNA strands; thus, one mutation can be reliably called in millions of sequenced bases. With DS, we examined ∼4.5 kb of the FGFR3 coding region in sperm DNA from older and younger donors. We identified sites with variant allele frequencies (VAFs) of 10-4 to 10-5, with an overall mutation frequency of the region of ∼6 × 10-7 Some of the substitutions are recurrent and are found at a higher VAF in older donors than in younger ones or are found exclusively in older donors. Also, older donors harbor more mutations associated with congenital disorders. Other mutations are present in both age groups, suggesting that these might result from a different mechanism (e.g., postzygotic mosaicism). We also observe that independent of age, the frequency and deleteriousness of the mutational spectra are more similar to COSMIC than to gnomAD variants. Our approach is an important strategy to identify mutations that could be associated with a gain of function of the receptor tyrosine kinase activity, with unexplored consequences in a society with delayed fatherhood.


Assuntos
Mosaicismo , Espermatozoides , Idoso , Células Germinativas , Humanos , Masculino , Mutação , Taxa de Mutação
2.
J Biol Chem ; 299(2): 102832, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581204

RESUMO

Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.


Assuntos
Membrana Celular , Proteína Adaptadora GRB2 , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Membrana Celular/metabolismo , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Ligantes , Microscopia de Fluorescência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteína Adaptadora GRB2/metabolismo
3.
BMC Bioinformatics ; 21(1): 96, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131723

RESUMO

BACKGROUND: Duplex sequencing is the most accurate approach for identification of sequence variants present at very low frequencies. Its power comes from pooling together multiple descendants of both strands of original DNA molecules, which allows distinguishing true nucleotide substitutions from PCR amplification and sequencing artifacts. This strategy comes at a cost-sequencing the same molecule multiple times increases dynamic range but significantly diminishes coverage, making whole genome duplex sequencing prohibitively expensive. Furthermore, every duplex experiment produces a substantial proportion of singleton reads that cannot be used in the analysis and are thrown away. RESULTS: In this paper we demonstrate that a significant fraction of these reads contains PCR or sequencing errors within duplex tags. Correction of such errors allows "reuniting" these reads with their respective families increasing the output of the method and making it more cost effective. CONCLUSIONS: We combine an error correction strategy with a number of algorithmic improvements in a new version of the duplex analysis software, Du Novo 2.0. It is written in Python, C, AWK, and Bash. It is open source and readily available through Galaxy, Bioconda, and Github: https://github.com/galaxyproject/dunovo.


Assuntos
Interface Usuário-Computador , Algoritmos , DNA/química , DNA/metabolismo , Humanos , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Chromosome Res ; 25(2): 155-172, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28155083

RESUMO

PR domain containing protein 9 (PRDM9) is a meiosis-specific, multi-domain protein that regulates the location of recombination hotspots by targeting its DNA recognition sequence for double-strand breaks (DSBs). PRDM9 specifically recognizes DNA via its tandem array of zinc fingers (ZnFs), epigenetically marks the local chromatin by its histone methyltransferase activity, and is an important tether that brings the DNA into contact with the recombination initiation machinery. A strong correlation between PRDM9-ZnF variants and specific DNA motifs at recombination hotspots has been reported; however, the binding specificity and kinetics of the ZnF domain are still obscure. Using two in vitro methods, gel mobility shift assays and switchSENSE, a quantitative biophysical approach that measures binding rates in real time, we determined that the PRDM9-ZnF domain forms a highly stable and long-lived complex with its recognition sequence, with a dissociation halftime of many hours. The ZnF domain exhibits an equilibrium dissociation constant (K D) in the nanomolar (nM) range, with polymorphisms in the recognition sequence directly affecting the binding affinity. We also determined that alternative sequences (15-16 nucleotides in length) can be specifically bound by different subsets of the ZnF domain, explaining the binding plasticity of PRDM9 for different sequences. Finally, longer binding targets are preferred than predicted from the numbers of ZnFs contacting the DNA. Functionally, a long-lived complex translates into an enzymatically active PRDM9 at specific DNA-binding sites throughout meiotic prophase I that might be relevant in stabilizing the components of the recombination machinery to a specific DNA target until DSBs are initiated by Spo11.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Motivos de Nucleotídeos , Dedos de Zinco , Animais , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Meiose , Camundongos , Ligação Proteica , Estabilidade Proteica , Recombinação Genética
5.
Proc Natl Acad Sci U S A ; 112(7): 2109-14, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646453

RESUMO

Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination.


Assuntos
Troca Genética , Conversão Gênica , Mutação , Recombinação Genética , Alelos , Feminino , Humanos , Masculino
6.
Hum Mol Genet ; 22(20): 4117-26, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23740942

RESUMO

There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10(-6). We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.


Assuntos
Acondroplasia/genética , Idade Paterna , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Seleção Genética , Idoso de 80 Anos ou mais , Envelhecimento , Simulação por Computador , Mutação em Linhagem Germinativa , Humanos , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo , Testículo/patologia
7.
Genes (Basel) ; 15(2)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397181

RESUMO

Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signalling pathway, as exemplified by the FGFR3 mutation, which is linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis-expansion patterns, as well as the increases in mutations in sperm for two FGFR3 variants-c.1138G>A (p.G380R) and c.1948A>G (p.K650E)-which are associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase in mutant sperm with the donor's age, as also reported in other studies, the TDII mutation showed focal mutation pockets in the testis but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signalling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into the transmission risks of micro-mosaics associated with advanced paternal age in the male germline.


Assuntos
Acondroplasia , Sêmen , Idoso , Humanos , Masculino , Acondroplasia/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Senescência Celular
8.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411226

RESUMO

Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.


Assuntos
Idade Paterna , Sêmen , Masculino , Humanos , Mutação , Testículo , Espermatozoides , Mutação em Linhagem Germinativa
9.
NPJ Breast Cancer ; 8(1): 76, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768433

RESUMO

The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10-2- 5.2 × 10-1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10-2-10-4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.

10.
FEBS J ; 288(10): 3108-3119, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32810928

RESUMO

Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.


Assuntos
Displasia Fibrosa Poliostótica/genética , Mutação em Linhagem Germinativa , Mosaicismo , Síndrome de Proteu/genética , Receptores Proteína Tirosina Quinases/genética , Síndrome de Sturge-Weber/genética , Criança , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Embrião de Mamíferos , Displasia Fibrosa Poliostótica/enzimologia , Displasia Fibrosa Poliostótica/patologia , Expressão Gênica , Genes Letais , Humanos , Lactente , Recém-Nascido , Fenótipo , Síndrome de Proteu/enzimologia , Síndrome de Proteu/patologia , Receptores Proteína Tirosina Quinases/deficiência , Transdução de Sinais , Síndrome de Sturge-Weber/enzimologia , Síndrome de Sturge-Weber/patologia
11.
NAR Genom Bioinform ; 3(1): lqab014, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33709076

RESUMO

[This corrects the article DOI: 10.1093/nargab/lqab002.].

12.
NAR Genom Bioinform ; 3(1): lqab002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575654

RESUMO

Duplex sequencing is currently the most reliable method to identify ultra-low frequency DNA variants by grouping sequence reads derived from the same DNA molecule into families with information on the forward and reverse strand. However, only a small proportion of reads are assembled into duplex consensus sequences (DCS), and reads with potentially valuable information are discarded at different steps of the bioinformatics pipeline, especially reads without a family. We developed a bioinformatics toolset that analyses the tag and family composition with the purpose to understand data loss and implement modifications to maximize the data output for the variant calling. Specifically, our tools show that tags contain polymerase chain reaction and sequencing errors that contribute to data loss and lower DCS yields. Our tools also identified chimeras, which likely reflect barcode collisions. Finally, we also developed a tool that re-examines variant calls from raw reads and provides different summary data that categorizes the confidence level of a variant call by a tier-based system. With this tool, we can include reads without a family and check the reliability of the call, that increases substantially the sequencing depth for variant calling, a particular important advantage for low-input samples or low-coverage regions.

13.
Viruses ; 13(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578293

RESUMO

The SARS-CoV-2 pandemic has required the development of multiple testing systems to monitor and control the viral infection. Here, we developed a PCR test to screen COVID-19 infections that can process up to ~180 samples per day without the requirement of robotics. For this purpose, we implemented the use of multichannel pipettes and plate magnetics for the RNA extraction step and combined the reverse transcription with the qPCR within one step. We tested the performance of two RT-qPCR kits as well as different sampling buffers and showed that samples taken in NaCl or PBS are stable and compatible with different COVID-19 testing systems. Finally, we designed a new internal control based on the human RNase P gene that does not require a DNA digestion step. Our protocol is easy to handle and reaches the sensitivity and accuracy of the standardized diagnostic protocols used in the clinic to detect COVID-19 infections.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , Reação em Cadeia da Polimerase , SARS-CoV-2 , Teste de Ácido Nucleico para COVID-19/normas , Humanos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade , Carga Viral
14.
PLoS Biol ; 5(9): e224, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17760502

RESUMO

The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100-1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 10(3) to >10(4) times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10(-6)) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change.


Assuntos
Mutação em Linhagem Germinativa , Modelos Genéticos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Testículo , Divisão Celular , Frequência do Gene , Humanos , Masculino , Mutação Puntual , Reação em Cadeia da Polimerase , Seleção Genética
15.
Anal Chem ; 81(14): 5770-6, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19601653

RESUMO

The amplification of millions of single molecules in parallel can be performed on microscopic magnetic beads that are contained in aqueous compartments of an oil-buffer emulsion. These bead-emulsion amplification (BEA) reactions result in beads that are covered by almost-identical copies derived from a single template. The post-amplification analysis is performed using different fluorophore-labeled probes. We have identified BEA reaction conditions that efficiently produce longer amplicons of up to 450 base pairs. These conditions include the use of a Titanium Taq amplification system. Second, we explored alternate fluorophores coupled to probes for post-PCR DNA analysis. We demonstrate that four different Alexa fluorophores can be used simultaneously with extremely low crosstalk. Finally, we developed an allele-specific extension chemistry that is based on Alexa dyes to query individual nucleotides of the amplified material that is both highly efficient and specific.


Assuntos
DNA/análise , DNA/genética , Corantes Fluorescentes/química , Microesferas , Técnicas de Amplificação de Ácido Nucleico/métodos , Absorção , Alelos , Animais , Composição de Bases , Bovinos , Cor , DNA/química , Emulsões , Humanos
16.
PLoS Genet ; 2(5): e70, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16680198

RESUMO

For decades, classical crossover studies and linkage disequilibrium (LD) analysis of genomic regions suggested that human meiotic crossovers may not be randomly distributed along chromosomes but are focused instead in "hot spots." Recent sperm typing studies provided data at very high resolution and accuracy that defined the physical limits of a number of hot spots. The data were also used to test whether patterns of LD can predict hot spot locations. These sperm typing studies focused on several small regions of the genome already known or suspected of containing a hot spot based on the presence of LD breakdown or previous experimental evidence of hot spot activity. Comparable data on target regions not specifically chosen using these two criteria is lacking but is needed to make an unbiased test of whether LD data alone can accurately predict active hot spots. We used sperm typing to estimate recombination in 17 almost contiguous ~5 kb intervals spanning 103 kb of human Chromosome 21. We found two intervals that contained new hot spots. The comparison of our data with recombination rates predicted by statistical analyses of LD showed that, overall, the two datasets corresponded well, except for one predicted hot spot that showed little crossing over. This study doubles the experimental data on recombination in men at the highest resolution and accuracy and supports the emerging genome-wide picture that recombination is localized in small regions separated by cold areas. Detailed study of one of the new hot spots revealed a sperm donor with a decrease in recombination intensity at the canonical recombination site but an increase in crossover activity nearby. This unique finding suggests that the position and intensity of hot spots may evolve by means of a concerted mechanism that maintains the overall recombination intensity in the region.


Assuntos
Cromossomos Humanos Par 21 , Recombinação Genética , Espermatozoides/patologia , Mapeamento Cromossômico , Troca Genética , Variação Genética , Haplótipos , Humanos , Masculino , Meiose , Modelos Estatísticos , Polimorfismo Genético
17.
Mol Ecol Resour ; 19(3): 623-638, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30666785

RESUMO

As recombination plays an important role in evolution, its estimation and the identification of hotspot positions is of considerable interest. We propose a novel approach for estimating population recombination rates based on genotyping or sequence data that involves a sequential multiscale change point estimator. Our method also permits demography to be taken into account. It uses several summary statistics within a regression model fitted on suitable scenarios. Our proposed method is accurate, computationally fast, and provides a parsimonious solution by ensuring a type I error control against too many changes in the recombination rate. An application to human genome data suggests a good congruence between our estimated and experimentally identified hotspots. Our method is implemented in the R-package LDJump, which is freely available at https://github.com/PhHermann/LDJump.


Assuntos
Biologia Computacional/métodos , Genética Populacional/métodos , Recombinação Genética , Técnicas de Genotipagem/métodos , Humanos , Análise de Sequência de DNA/métodos
18.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308055

RESUMO

PRDM9 is a trans-acting factor directing meiotic recombination to specific DNA-binding sites by its zinc finger (ZnF) array. It was suggested that PRDM9 is a multimer; however, we do not know the stoichiometry or the components inducing PRDM9 multimerization. In this work, we used in vitro binding studies and characterized with electrophoretic mobility shift assays, mass spectrometry, and fluorescence correlation spectroscopy the stoichiometry of the PRDM9 multimer of two different murine PRDM9 alleles carrying different tags and domains produced with different expression systems. Based on the migration distance of the PRDM9-DNA complex, we show that PRDM9 forms a trimer. Moreover, this stoichiometry is adapted already by the free, soluble protein with little exchange between protein monomers. The variable ZnF array of PRDM9 is sufficient for multimerization, and at least five ZnFs form already a functional trimer. Finally, we also show that only one ZnF array within the PRDM9 oligomer binds to the DNA, whereas the remaining two ZnF arrays likely maintain the trimer by ZnF-ZnF interactions.


Assuntos
DNA/química , DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Recombinação Homóloga , Espectrometria de Massas , Meiose , Camundongos , Modelos Moleculares , Multimerização Proteica , Solubilidade , Dedos de Zinco
19.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023833

RESUMO

Meiotic recombination has strong, but poorly understood effects on short tandem repeat (STR) instability. Here, we screened thousands of single recombinant products with sperm typing to characterize the role of polymorphic poly-A repeats at a human recombination hotspot in terms of hotspot activity and STR evolution. We show that the length asymmetry between heterozygous poly-A's strongly influences the recombination outcome: a heterology of 10 A's (9A/19A) reduces the number of crossovers and elevates the frequency of non-crossovers, complex recombination products, and long conversion tracts. Moreover, the length of the heterology also influences the STR transmission during meiotic repair with a strong and significant insertion bias for the short heterology (6A/7A) and a deletion bias for the long heterology (9A/19A). In spite of this opposing insertion-/deletion-biased gene conversion, we find that poly-A's are enriched at human recombination hotspots that could have important consequences in hotspot activation.


Assuntos
Troca Genética/genética , Heterozigoto , Meiose/genética , Repetições de Microssatélites/genética , Poli A/genética , Alelos , Conversão Gênica/genética , Genótipo , Haplótipos/genética , Humanos , Masculino , Instabilidade de Microssatélites , Taxa de Mutação , Polimorfismo de Nucleotídeo Único/genética , Espermatozoides/citologia , Doadores de Tecidos
20.
Methods Mol Biol ; 1551: 3-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138838

RESUMO

To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3' ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.


Assuntos
Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , DNA/genética , Genômica , Humanos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA