RESUMO
BACKGROUND: Animal models of non-alcoholic steatohepatitis (NASH) are important tools in preclinical research and drug discovery. Gubra-Amylin NASH (GAN) diet-induced obese (DIO) mice represent a model of fibrosing NASH. The present study directly assessed the clinical translatability of the model by head-to-head comparison of liver biopsy histological and transcriptome changes in GAN DIO-NASH mouse and human NASH patients. METHODS: C57Bl/6 J mice were fed chow or the GAN diet rich in saturated fat (40%), fructose (22%) and cholesterol (2%) for ≥38 weeks. Metabolic parameters as well as plasma and liver biomarkers were assessed. Liver biopsy histology and transcriptome signatures were compared to samples from human lean individuals and patients diagnosed with NASH. RESULTS: Liver lesions in GAN DIO-NASH mice showed similar morphological characteristics compared to the NASH patient validation set, including macrosteatosis, lobular inflammation, hepatocyte ballooning degeneration and periportal/perisinusoidal fibrosis. Histomorphometric analysis indicated comparable increases in markers of hepatic lipid accumulation, inflammation and collagen deposition in GAN DIO-NASH mice and NASH patient samples. Liver biopsies from GAN DIO-NASH mice and NASH patients showed comparable dynamics in several gene expression pathways involved in NASH pathogenesis. Consistent with the clinical features of NASH, GAN DIO-NASH mice demonstrated key components of the metabolic syndrome, including obesity and impaired glucose tolerance. CONCLUSIONS: The GAN DIO-NASH mouse model demonstrates good clinical translatability with respect to the histopathological, transcriptional and metabolic aspects of the human disease, highlighting the suitability of the GAN DIO-NASH mouse model for identifying therapeutic targets and characterizing novel drug therapies for NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicaçõesRESUMO
Combination approaches for the treatment of metabolic diseases such as obesity and diabetes are becoming increasingly relevant. Co-administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist with a cholecystokinin receptor-1 (CCKR1) agonist exert synergistic effects on weight loss in obese rodents. Here, we report on the effects of a novel fusion peptide (C2816) comprised of a stabilized GLP-1R agonist, AC3174, and a CCKR1-selective agonist, AC170222. C2816 was constructed such that AC3174 was linked to the N-terminus of AC170222, thus preserving the C-terminal amide of the CCK moiety. In functional in vitro assays C2816 retained full agonism at GLP-1R and CCKR1 at lower potency compared to parent molecules, whereas a previously reported fusion peptide in the opposite orientation, (pGlu-Gln)-CCK-8/exendin-4, exhibited no activity at either receptor. Acutely, in vivo, C2816 increased cFos in key central nuclei relevant to feeding behavior, and reduced food intake in wildtype (WT), but less so in GLP-1R-deficient (GLP-1RKO), mice. In sub-chronic studies in diet-induced obese (DIO) mice, C2816 exerted superior reduction in body weight compared to co-administration of AC3174 and AC170222 albeit at a higher molar dose. These data suggest that the synergistic pharmacological effects of GLP-1 and CCK pathways can be harnessed in a single therapeutic peptide.
Assuntos
Fármacos Antiobesidade/química , Colecistocinina/química , Peptídeo 1 Semelhante ao Glucagon/química , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor de Colecistocinina A/agonistas , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Encéfalo/efeitos dos fármacos , Colecistocinina/administração & dosagem , Sinergismo Farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/farmacologia , Ratos Sprague-Dawley , Redução de PesoRESUMO
These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like peptide-1 receptor (GLP-1R) agonism in NASH. We compared the effects of a high trans-fat (HTF) or high lard fat (HLF) diet on key facets of nonalcoholic fatty liver disease (NAFLD)/NASH in Lep(ob)/Lep(ob) and C57BL6J (B6) mice. Although HLF-fed mice experienced overall greater gains in weight and adiposity, the addition of trans-fat better mirrored pathophysiological features of NASH (e.g., hepatomegaly, hepatic lipid, and fibrosis). Administration of AC3174, an exenatide analog, and GLP-1R agonist to Lep(ob)/Lep(ob) and B6 ameliorated hepatic endpoints in both dietary models. Next, we assessed whether AC3174-mediated improvements in diet-induced NASH were solely due to weight loss in HTF-fed mice. AC3174-treatment significantly reduced body weight (8.3%), liver mass (14.2%), liver lipid (12.9%), plasma alanine aminotransferase, and triglycerides, whereas a calorie-restricted, weight-matched group demonstrated only modest nonsignificant reductions in liver mass (9%) and liver lipid (5.1%) relative to controls. Treatment of GLP-1R-deficient (GLP-1RKO) mice with AC3174 had no effect on body weight, adiposity, liver or plasma indices pointing to the GLP-1R-dependence of AC3174's effects. Interestingly, the role of endogenous GLP-1Rs in NASH merits further exploration as the GLP-1RKO model was protected from the deleterious hepatic effects of HTF. Our pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH.
Assuntos
Fígado Gorduroso/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores de Glucagon/agonistas , Animais , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Dieta , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Determinação de Ponto Final , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hormônios/sangue , Leptina/genética , Lipídeos/química , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Receptores de Glucagon/genética , Ácidos Graxos trans/farmacologia , Redução de Peso/efeitos dos fármacosRESUMO
Dysregulated hepatocyte lipid metabolism is a hallmark of hepatic lipotoxicity and contributes to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl CoA carboxylase (ACC) inhibitors decrease hepatocyte lipotoxicity by inhibiting de novo lipogenesis and concomitantly increasing fatty acid oxidation (FAO), and firsocostat, a liver-targeted inhibitor of ACC1/2, is under evaluation clinically in patients with NASH. ACC inhibition is associated with improvements in indices of NASH and reduced liver triglyceride (TG) content, but also increased circulating TG in subjects with NASH and preclinical rodent models. Here we evaluated whether enhancing hepatocyte FAO by combining ACC inhibitors with peroxisomal proliferator-activated receptor (PPAR) or thyroid hormone receptor beta (THRß) agonists could drive greater liver TG reduction and NASH/antifibrotic efficacy, while ameliorating ACC inhibitor-induced hypertriglyceridemia. In high-fat diet-fed dyslipidemic rats, the addition of PPAR agonists fenofibrate (Feno), elafibranor (Ela), lanifibranor (Lani), seladelpar (Sela) or saroglitazar (Saro), or the THRb agonist resmetirom (Res), to an analogue of firsocostat (ACCi) prevented ACCi-induced hypertriglyceridemia. However, only PPARα agonists (Feno and Ela) and Res provided additional liver TG reduction. In the choline-deficient high-fat diet rat model of advanced liver fibrosis, neither PPARα (Feno) nor THRß (Res) agonism augmented the antifibrotic efficacy of ACCi. Conclusion: These data suggest that combination therapies targeting hepatocyte lipid metabolism may have beneficial effects on liver TG reduction; however, they may not be sufficient to drive fibrosis regression.
Assuntos
Fenofibrato , Hipertrigliceridemia , Hepatopatia Gordurosa não Alcoólica , Acetatos , Acetil-CoA Carboxilase , Animais , Fenofibrato/farmacologia , Humanos , Cirrose Hepática/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/uso terapêutico , Ratos , Triglicerídeos/uso terapêuticoRESUMO
Chronic hepatitis B virus (HBV) infection is characterized by the presence of high circulating levels of non-infectious lipoprotein-like HBV surface antigen (HBsAg) particles thought to contribute to chronic immune dysfunction in patients. Lipid and metabolomic analysis of humanized livers from immunodeficient chimeric mice (uPA/SCID) revealed that HBV infection dysregulates several lipid metabolic pathways. Small molecule inhibitors of lipid biosynthetic pathway enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase, and subtilisin kexin isozyme-1/site-1 protease in HBV-infected HepG2-NTCP cells demonstrated potent and selective reduction of extracellular HBsAg. However, a liver-targeted ACC inhibitor did not show antiviral activity in HBV-infected liver chimeric mice, despite evidence of on-target engagement. Our study suggests that while HBsAg production may be dependent on hepatic de novo lipogenesis in vitro, this may be overcome by extrahepatic sources (such as lipolysis or diet) in vivo. Thus, a combination of agents targeting more than one lipid metabolic pathway may be necessary to reduce HBsAg levels in patients with chronic HBV infection.
Assuntos
Hepatite B Crônica , Hepatite B , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Lipídeos/uso terapêutico , Camundongos , Camundongos SCIDRESUMO
OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.
Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Peptídeo YY/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Derivação Gástrica , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/fisiopatologia , Peptídeo YY/fisiologia , Redução de PesoRESUMO
Body weight is regulated by complex neurohormonal interactions between endocrine signals of long-term adiposity (e.g., leptin, a hypothalamic signal) and short-term satiety (e.g., amylin, a hindbrain signal). We report that concurrent peripheral administration of amylin and leptin elicits synergistic, fat-specific weight loss in leptin-resistant, diet-induced obese rats. Weight loss synergy was specific to amylin treatment, compared with other anorexigenic peptides, and dissociable from amylin's effect on food intake. The addition of leptin after amylin pretreatment elicited further weight loss, compared with either monotherapy condition. In a 24-week randomized, double-blind, clinical proof-of-concept study in overweight/obese subjects, coadministration of recombinant human leptin and the amylin analog pramlintide elicited 12.7% mean weight loss, significantly more than was observed with either treatment alone (P < 0.01). In obese rats, amylin pretreatment partially restored hypothalamic leptin signaling (pSTAT3 immunoreactivity) within the ventromedial, but not the arcuate nucleus and up-regulated basal and leptin-stimulated signaling in the hindbrain area postrema. These findings provide both nonclinical and clinical evidence that amylin agonism restored leptin responsiveness in diet-induced obesity, suggesting that integrated neurohormonal approaches to obesity pharmacotherapy may facilitate greater weight loss by harnessing naturally occurring synergies.
Assuntos
Amiloide/agonistas , Amiloide/química , Leptina/metabolismo , Tecido Adiposo/metabolismo , Amiloide/metabolismo , Amiloide/farmacologia , Animais , Peso Corporal , Restrição Calórica , Modelos Animais de Doenças , Hormônios/metabolismo , Hipotálamo/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/análogos & derivados , Leptina/farmacologia , Modelos Biológicos , Obesidade/genética , Obesidade/terapia , Consumo de Oxigênio , RatosRESUMO
OBJECTIVES: Combinatorial therapies are under intense investigation to develop more efficient anti-obesity drugs; however, little is known about how they act in the brain to produce enhanced anorexia and weight loss. The goal of this study was to identify the brain sites and neuronal populations engaged during the co-administration of GLP-1R and CCK1R agonists, an efficient combination therapy in obese rodents. METHODS: We measured acute and long-term feeding and body weight responses and neuronal activation patterns throughout the neuraxis and in specific neuronal subsets in response to GLP-1R and CCK1R agonists administered alone or in combination in lean and high-fat diet fed mice. We used PhosphoTRAP to obtain unbiased molecular markers for neuronal populations selectively activated by the combination of the two agonists. RESULTS: The initial anorectic response to GLP-1R and CCK1R co-agonism was mediated by a reduction in meal size, but over a few hours, a reduction in meal number accounted for the sustained feeding suppressive effects. The nucleus of the solitary tract (NTS) is one of the few brain sites where GLP-1R and CCK1R signalling interact to produce enhanced neuronal activation. None of the previously categorised NTS neuronal subpopulations relevant to feeding behaviour were implicated in this increased activation. However, we identified NTS/AP Calcrl+ neurons as treatment targets. CONCLUSIONS: Collectively, these studies indicated that circuit-level integration of GLP-1R and CCK1R co-agonism in discrete brain nuclei including the NTS produces enhanced rapid and sustained appetite suppression and weight loss.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/tratamento farmacológico , Receptores da Colecistocinina/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Regulação do Apetite , Encéfalo/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Solitário/metabolismo , Redução de Peso/efeitos dos fármacosRESUMO
An increasing prevalence of overweight and obesity in people living with HIV has been associated with initiation of antiretroviral therapy with integrase strand transfer inhibitors (INSTIs). An off-target inhibition of the endogenous ligand binding to the human melanocortin 4 receptor (MC4R) has been suggested as a potential mechanism for clinical body weight gain following initiation of dolutegravir, an INSTI. In this study, we interrogated several INSTIs for their capacity for antagonism or agonism of MC4R in an in vitro cell-based assays including at concentrations far exceeding plasma concentrations reached at the recommended dosages. Our results indicate that while INSTIs do exhibit the capacity to antagonize MC4R, this occurs at concentrations well above predicted clinical exposure and is thus an implausible explanation for INSTI-associated weight gain.
Assuntos
Inibidores de Integrase de HIV/efeitos adversos , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Peso Corporal , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Humanos , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidoresRESUMO
To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
Assuntos
Ingestão de Alimentos , Metabolismo Energético , Neurônios/metabolismo , Receptores da Calcitonina/fisiologia , Núcleo Solitário/metabolismo , Animais , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Núcleo Solitário/citologiaRESUMO
Non-alcoholic fatty liver disease and steatohepatitis are highly associated with obesity and type 2 diabetes mellitus. Cotadutide, a GLP-1R/GcgR agonist, was shown to reduce blood glycemia, body weight and hepatic steatosis in patients with T2DM. Here, we demonstrate that the effects of Cotadutide to reduce body weight, food intake and improve glucose control are predominantly mediated through the GLP-1 signaling, while, its action on the liver to reduce lipid content, drive glycogen flux and improve mitochondrial turnover and function are directly mediated through Gcg signaling. This was confirmed by the identification of phosphorylation sites on key lipogenic and glucose metabolism enzymes in liver of mice treated with Cotadutide. Complementary metabolomic and transcriptomic analyses implicated lipogenic, fibrotic and inflammatory pathways, which are consistent with a unique therapeutic contribution of GcgR agonism by Cotadutide in vivo. Significantly, Cotadutide also alleviated fibrosis to a greater extent than Liraglutide or Obeticholic acid (OCA), despite adjusting dose to achieve similar weight loss in 2 preclinical mouse models of NASH. Thus Cotadutide, via direct hepatic (GcgR) and extra-hepatic (GLP-1R) effects, exerts multi-factorial improvement in liver function and is a promising therapeutic option for the treatment of steatohepatitis.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Lipogênese/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/complicações , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , ProteômicaRESUMO
Clinical trials assessing therapies for the treatment of non-alcoholic steatohepatitis (NASH) involve a baseline and end of study liver biopsy, and assessment of improvement in disease endpoints, often reflected as a percent of each treatment arm that improved, worsened or remained unchanged. Traditional preclinical rodent studies for putative NASH therapies are often limited by not knowing the level of liver disease/NASH present at the start of therapeutic intervention, instead of randomizing treatment groups on easily measurable endpoints such as body weight, metabolic status or similar. Here, we describe a liver biopsy technique in a diet-induced NASH mouse model, for the assessment of baseline liver disease in order to exclude mice that do not exhibit fibrosis and to equally distribute animals with similar fibrosis between treatment groups. These levels can then be compared to the terminal, post-intervention levels for a truer understanding of in vivo pharmacological effects and thus more accurately reflect clinical trial design strategies. The mouse is properly anesthetized and prepared for the surgery using sterile conditions. A small incision is made in the upper abdomen and the left lateral lobe of the liver is exposed. A wedge of the liver is surgically removed, and a similar-sized piece of absorbable gelatin is put in its place to stop any bleeding. The mouse is surgically sutured and stapled closed and will recover back to normal within 1 day. The entire process takes 5-10 min per mouse. Here we exemplify the utility of this procedure by leveraging the pre-study biopsy to assess the impact of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide on NASH endpoints in mice.
Assuntos
Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Biópsia , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND/GOALS: The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. METHODS: Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype (WT) mice made obese on high-fat diet. RESULTS: Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, insulin resistance (HOMA-IR), and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. CONCLUSIONS: PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as glucagon-like peptide-1 (GLP-1) remain to be investigated.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Obesidade/cirurgia , Peptídeo YY/genética , Receptores dos Hormônios Gastrointestinais/genética , Animais , Masculino , Camundongos , Camundongos KnockoutRESUMO
OBJECTIVE: Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery. METHODS: The metabolic effects of high-fat diet and the ability of Roux-en-Y gastric bypass surgery to lower food intake and body weight, as well as improve glucose handling, was tested in GLP1R and Y2R-double knockout (GLP1RKO/Y2RKO) and C57BL6J wildtype (WT) mice. RESULTS: GLP1RKO/Y2RKO and WT mice responded similarly for up to 20 weeks on high-fat diet and 16 weeks after RYGB. There were no significant differences in loss of body and liver weight, fat mass, reduced food intake, relative increase in energy expenditure, improved fasting insulin, glucose tolerance, and insulin tolerance between WT and GLP1RKO/Y2RKO mice after RYGB. CONCLUSIONS: Combined loss of GLP1R and Y2R-signaling was not able to negate or attenuate the beneficial effects of RYGB on body weight and glucose homeostasis in mice, suggesting that a larger number of signaling pathways is involved or that the critical pathway has not yet been identified.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cirurgia Bariátrica , Glicemia , Peso Corporal , Metabolismo Energético , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Insulina , Resistência à Insulina , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Peptídeo YY , Receptores Acoplados a Proteínas G/genética , TranscriptomaRESUMO
BACKGROUND: The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice. AIM: To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat. METHODS: Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level. RESULTS: The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets. CONCLUSION: Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.
Assuntos
Modelos Animais de Doenças , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Óleo de Palmeira/efeitos adversos , Animais , Biópsia , Dieta Hiperlipídica/efeitos adversos , Humanos , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácidos Graxos trans/efeitos adversosRESUMO
Circulating levels of leptin correlate with food intake and adiposity. A decline in serum leptin associated with calorie restriction instigates behavioral and metabolic adaptation, increasing appetite and conserving energy. Brain melanocortin-4 receptors (Mc4rs) are important mediators of leptin's effects on appetite and energy expenditure. Because subtle changes in function associated with heterozygous null mutations for either the Leptin (Lep-HET) or Mc4r genes (Mc4r-HET) increase adiposity, we tested the hypothesis that combined heterozygous mutations (Dbl-HET) would severely exacerbate diet-induced obesity (DIO) and insulin resistance in C57BL/6J mice. Serum leptin levels were lower as a function of adiposity in heterozygous Leptin mutants (Lep-HET, Dbl-HET) matched with mice homozygous for the wild-type (WT) Lep gene (Mc4r-HET). Evidence for an additive interaction on adiposity in Dbl-HET mice maintained on a low-fat diet was observed at 10 wk of age. Male but not female mice developed DIO and insulin resistance on a high-fat diet. Compared with WT mice, DIO was more severe in Mc4r-HET but not Lep-HET mice, regardless of sex. However, the response of male and female Dbl-HET mice was different, with males being less and females being more responsive relative to Mc4r-HET. Glucose tolerance of Dbl-HET mice was not significantly different from WT mice in either sex. These results show a complex interaction between the Leptin and Mc4r genes that is influenced by age, gender, and diet. Remarkably, while heterozygous Lep mutations initially exacerbate obesity, in situations of severe obesity, reduced leptin levels may act oppositely and have beneficial effects on energy homeostasis.
Assuntos
Heterozigoto , Resistência à Insulina/genética , Leptina/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Fatores Etários , Animais , Cruzamentos Genéticos , Dieta Aterogênica , Feminino , Glucose/metabolismo , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/complicações , Obesidade/etiologia , Caracteres SexuaisRESUMO
Previously, we reported that combination treatment with rat amylin (100 microg/kg.d) and murine leptin (500 microg/kg.d) elicited greater inhibition of food intake and greater body weight loss in diet-induced obese rats than predicted by the sum of the monotherapy conditions, a finding consistent with amylin-induced restoration of leptin responsiveness. In the present study, a 3 x 4 factorial design was used to formally test for a synergistic interaction, using lower dose ranges of amylin (0, 10, and 50 microg/kg.d) and leptin (0, 5, 25, and 125 microg/kg.d), on food intake and body weight after 4 wk continuous infusion. Response surface methodology analysis revealed significant synergistic anorexigenic (P < 0.05) and body weight-lowering (P < 0.05) effects of amylin/leptin combination treatment, with up to 15% weight loss at doses considerably lower than previously reported. Pair-feeding (PF) experiments demonstrated that reduction of food intake was the predominant mechanism for amylin/leptin-mediated weight loss. However, fat loss was 2-fold greater in amylin/leptin-treated rats than PF controls. Furthermore, amylin/leptin-mediated weight loss was not accompanied by the counterregulatory decrease in energy expenditure and chronic shift toward carbohydrate (rather than fat) utilization observed with PF. Hepatic gene expression analyses revealed that 28 d treatment with amylin/leptin (but not PF) was associated with reduced expression of genes involved in hepatic lipogenesis (Scd1 and Fasn mRNA) and increased expression of genes involved in lipid utilization (Pck1 mRNA). We conclude that amylin/leptin interact synergistically to reduce body weight and adiposity in diet-induced obese rodents through a number of anorexigenic and metabolic effects.
Assuntos
Amiloide/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Leptina/farmacologia , Obesidade/patologia , Transdução de Sinais/efeitos dos fármacos , Amiloide/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Restrição Calórica , Dieta/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/administração & dosagem , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
AIM: To comprehensively evaluate mitochondrial (dys) function in preclinical models of nonalcoholic steatohepatitis (NASH). METHODS: We utilized two readily available mouse models of nonalcoholic fatty liver disease (NAFLD) with or without progressive fibrosis: Lepob/Lepob (ob/ob) and FATZO mice on high trans-fat, high fructose and high cholesterol (AMLN) diet. Presence of NASH was assessed using immunohistochemical and pathological techniques, and gene expression profiling. Morphological features of mitochondria were assessed via transmission electron microscopy and immunofluorescence, and function was assessed by measuring oxidative capacity in primary hepatocytes, and respiratory control and proton leak in isolated mitochondria. Oxidative stress was measured by assessing activity and/or expression levels of Nrf1, Sod1, Sod2, catalase and 8-OHdG. RESULTS: When challenged with AMLN diet for 12 wk, ob/ob and FATZO mice developed steatohepatitis in the presence of obesity and hyperinsulinemia. NASH development was associated with hepatic mitochondrial abnormalities, similar to those previously observed in humans, including mitochondrial accumulation and increased proton leak. AMLN diet also resulted in increased numbers of fragmented mitochondria in both strains of mice. Despite similar mitochondrial phenotypes, we found that ob/ob mice developed more advanced hepatic fibrosis. Activity of superoxide dismutase (SOD) was increased in ob/ob AMLN mice, whereas FATZO mice displayed increased catalase activity, irrespective of diet. Furthermore, 8-OHdG, a marker of oxidative DNA damage, was significantly increased in ob/ob AMLN mice compared to FATZO AMLN mice. Therefore, antioxidant capacity reflected as the ratio of catalase:SOD activity was similar between FATZO and C57BL6J control mice, but significantly perturbed in ob/ob mice. CONCLUSION: Oxidative stress, and/or the capacity to compensate for increased oxidative stress, in the setting of mitochondrial dysfunction, is a key factor for development of hepatic injury and fibrosis in these mouse models.
Assuntos
Antioxidantes/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Catalase/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Dieta Hiperlipídica , Açúcares da Dieta , Modelos Animais de Doenças , Frutose , Fígado/ultraestrutura , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/ultraestrutura , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fator 1 Nuclear Respiratório/metabolismo , Índice de Gravidade de Doença , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Fatores de TempoRESUMO
Non-alcoholic fatty liver disease (NAFLD) is associated with post-operative liver failure (PLF) and impaired liver regeneration. We investigated the effects of a glucagon-like peptide-1 (GLP-1) receptor agonist on NAFLD, PLF and liver regeneration in mice fed chow diet or methionine/choline-deficient diet (MCD) or high fat diet (HFD). Fc-GLP-1 decreased transaminases, reduced intrahepatic triglycerides (TG) and improved MCD-induced liver dysfuction. Macrophage/Kupffer cell-related markers were also reduced although Fc-GLP-1 increased expression of genes related to natural killer (NK), cytotoxic T lymphocytes and hepatic stellate cell (HSC) activation. After partial hepatectomy (PH), survival rates increased in mice receiving Fc-GLP-1 on chow or MCD diet. However, the benefit of Fc-GLP-1 on NASH-like features was attenuated 2 weeks post-PH and liver mass restoration was not improved. At this time-period, markers of NK cells and cytotoxic T lymphocytes were further elevated in Fc-GLP-1 treated mice. Increased HSC related gene expression in livers was observed together with decreased retinyl ester content and increased retinal and retinoic acid, reflecting HSC activation. Similar effects were found in mice fed HFD receiving Fc-GLP-1. Our results shed light on the differential effects of a long-acting GLP-1R agonist in improving NAFLD and PLF, but not enhancing liver regeneration in mice.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hepatectomia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Biomarcadores , Biópsia , Modelos Animais de Doenças , Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Imuno-Histoquímica , Mediadores da Inflamação , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Regeneração Hepática , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologiaRESUMO
Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.