Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Org Chem ; 88(3): 1803-1814, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36632764

RESUMO

Spiro compounds have been considered key scaffolds for pharmaceutical applications. Although many synthetic methods exist for monospirocycles, fewer approaches are known for dispirocycles. Here, we report a highly cis-selective method for constructing a 5/6/5-dispirocyclic structure containing pyrrolidine and γ-lactam rings with various substituents from a series of N-arylpropiolamides. The high cis-selectivity would result from isomerization under thermodynamic control. Cis- and trans-diastereomers can be in equilibrium, favoring cis-adducts.

2.
Bioorg Med Chem ; 33: 116018, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524940

RESUMO

Quinazolines have long been known to exert varied pharmacologic activities that make them suitable for use in treating hypertension, viral infections, tumors, and malaria. Since 2014, we have synthesized approximately 150 different 6,7-dimethoxyquinazoline-2,4-diamines and evaluated their antimalarial activity via structure-activity relationship studies. Here, we summarize the results and report the discovery of 6,7-dimethoxy-N4-(1-phenylethyl)-2-(pyrrolidin-1-yl)quinazolin-4-amine (20, SSJ-717), which exhibits high antimalarial activity as a promising antimalarial drug lead.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
3.
Malar J ; 18(1): 237, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307493

RESUMO

BACKGROUND: Basic blue 3 is a promising anti-malarial lead compound based on the π-delocalized lipophilic cation hypothesis. Its derivatives with nitrogen atoms bonded to carbon atoms at the 3- and 7-positions on the phenoxazine ring were previously shown to exert potent antiprotozoal activity against Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei rhodesiense, and Leishmania donovani parasites in vitro. However, compounds with nitrogen modification at the 10-position on the phenoxazine ring were not evaluated. METHODS: Six acylphenoxazine derivatives (ITT-001 to 006) with nitrogen modification at the 10-position on the phenoxazine ring, which were synthesized from basic blue 3, were characterized and evaluated for anti-malarial activity in vitro with an automated haematology analyzer (XN-30) and light microscopy. Intensity of self-fluorescence was measured using a fluorometer. Localization of basic blue 3 was observed by fluorescence microscopy. Cytotoxicity was evaluated using human cell lines, HEK293T and HepG2 cells. Finally, anti-malarial activity was evaluated in a rodent malaria model. RESULTS: All the six derivatives showed anti-malarial efficacy even against chloroquine-, pyrimethamine-, and artemisinin-resistant field isolates similar to the sensitive strains and isolates in vitro. The efficacy of basic blue 3 was the strongest, followed by that of ITT-001 to 004 and 006, while that of ITT-005 was the weakest. Basic blue 3 showed strong self-fluorescence, whereas ITT derivatives had five- to tenfold lower intensity than that of basic blue 3, which was shown by fluorescence microscopy to be selectively accumulated in the plasmodial cytoplasm. In contrast, ITT-003, 004, and 006 exhibited the lowest cytotoxicity in HEK293T and HepG2 cells in vitro and the highest selectivity between anti-malarial activity and cytotoxicity. The in vivo anti-malarial assay indicated that oral administration of ITT-004 was the most effective against the rodent malaria parasite, Plasmodium berghei NK65 strain. CONCLUSIONS: The six ITT derivatives were effective against chloroquine- and pyrimethamine-resistant strains and artemisinin-resistant field isolates as well as the sensitive ones. Among them, ITT-004, which had high anti-malarial activity and low cytotoxicity in vitro and in vivo, is a promising anti-malarial lead compound.


Assuntos
Antimaláricos/farmacologia , Oxazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/toxicidade , Células HEK293 , Células Hep G2 , Humanos , Oxazinas/toxicidade , Testes de Toxicidade
4.
Biol Pharm Bull ; 42(7): 1134-1139, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30982786

RESUMO

Cancer is the leading cause of death and there is a particularly pressing need to develop effective treatments for breast and prostate cancer. In the current study, we show the inhibitory effects of cinnamic acid derivatives, including caffeic acid phenethyl ester (CAPE, 1), on the growth of breast and prostate cancer cells. Among the compounds examined, 3,4,5-trihydroxycinnamic acid decyl ester (6) showed the most potent inhibition of cancer cell growth by the induction of apoptosis. Compound 6 could be a new anti-cancer agent for use against breast and prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cinamatos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Células PC-3
5.
Biochem Biophys Res Commun ; 499(3): 681-687, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29608894

RESUMO

We searched for inhibitors against prolyl isomerase Pin1 in order to develop functional foods to prevent and cure various Pin1 related diseases such as cancer, diabetes, cardiovascular disease, Alzheimers's disease, and so on. We created a polyphenol library consisting of ingredients in healthy foods and beverages, since polyphenols like epigallocatechin gallate (EGCG) in green tea and 974B in brown algae had been identified as its Pin1 inhibitors. Several polyphenols such as EGCG derivatives, caffeic acid derivatives and tannic acid inhibited Pin1 activity. These results provide a first step in development of the functional foods and beverage targeting Pin1 and its related diseases.


Assuntos
Alimentos , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Polifenóis/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Catequina/química , Catequina/farmacologia , Células HCT116 , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Polifenóis/química , Quercetina/química , Quercetina/farmacologia , Rutina/química , Rutina/farmacologia , Taninos/química , Taninos/farmacologia
6.
J Org Chem ; 83(17): 10636-10645, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30044913

RESUMO

Stereoselective construction of exo-olefin terminated pyrrolidine and piperidine frameworks was developed by employing SmI2-mediated intramolecular radical cyclization of haloalkynaks. The radical cyclization affording 2,3-disubstituted pyrrolidines and piperidines proceeded in a highly stereoselective manner. However, decreasing stereoselectivety was observed in the preparation of 2,4-disubstituted pyrrolidine and 3,4-disubstituted piperidine derivatives in the cyclization.

7.
Mar Drugs ; 15(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398249

RESUMO

Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1-4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1-4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 µM, respectively.


Assuntos
Antivirais/farmacologia , Organismos Aquáticos/química , Equinodermos/química , RNA Helicases/antagonistas & inibidores , Sulfatos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Hepacivirus/efeitos dos fármacos
8.
Bioorg Med Chem ; 23(13): 3788-95, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25910587

RESUMO

Obesity is a risk factor associated with several lifestyle-related diseases, for example, diabetes, high blood pressure, hyperlipidemia and cancer. Caffeic acid 2-phenylethyl ester (CAPE, 1), a naturally-occurring compound found in various plants and propolis, which exhibits anti-inflammatory, immunomodulatory and cytotoxic activities and inhibits 3T3-L1 differentiation to adipocytes. As part of our efforts to moderate lifestyle-related diseases, we synthesized analogs of 1 and studied their effects on pancreatic lipase activities, lipid absorption, and 3T3-L1 differentiation. We found that catechols 1-4 show inhibitory activities against pancreatic lipase in a dose-dependent manner in vitro. Compounds 1-3 proved to be more potent inhibitors of pancreatic lipase than 5, 6, 8, and 9, which have one hydroxyl group, respectively. Compound 7 has three aromatic hydroxyl groups and restrains greater lipase inhibitory activity than the other compounds. In addition, 7 and 3 significantly suppress a rise in blood triglyceride (TG) levels in mice given corn oil orally. Furthermore, 2 and 3 are more potent at preventing 3T3-L1 differentiation (lipid accumulation) than 1, while 7 is more potent than 3, 8, and 9 in these assays. Compounds 2, 3, and 7 inhibit lipid absorption and accumulation, with new compound 7 being the most potent. These results indicate that 7 may have potential benefits as a health agent with anti-obesity properties.


Assuntos
Fármacos Antiobesidade/farmacologia , Ácidos Cafeicos/farmacologia , Catecóis/farmacologia , Absorção Intestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Células 3T3-L1 , Animais , Fármacos Antiobesidade/síntese química , Ácidos Cafeicos/síntese química , Catecóis/síntese química , Diferenciação Celular/efeitos dos fármacos , Óleo de Milho/administração & dosagem , Relação Dose-Resposta a Droga , Lipase/antagonistas & inibidores , Lipase/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Álcool Feniletílico/síntese química , Álcool Feniletílico/farmacologia , Relação Estrutura-Atividade , Suínos , Triglicerídeos/antagonistas & inibidores , Triglicerídeos/sangue
9.
Int J Mol Sci ; 16(8): 18439-53, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262613

RESUMO

Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure-activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.


Assuntos
Antracenos/farmacologia , Antraquinonas/farmacologia , Antivirais/farmacologia , Hepacivirus/enzimologia , Perileno/análogos & derivados , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Antracenos/química , Antraquinonas/química , Antivirais/química , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Perileno/química , Perileno/farmacologia , RNA Helicases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
J Org Chem ; 79(16): 7512-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25075759

RESUMO

The first enantioselective total synthesis of penostatin E has been accomplished. Two highly efficient and diastereoselective reactions, a Hosomi-Sakurai allylation and an intramolecular Pauson-Khand reaction, were utilized for the construction of the basic carbon framework of the target molecule as the key steps. A late-stage introduction of the side chain and a successful base-promoted elimination reaction afforded an efficient synthetic route to (+)-penostatin E.


Assuntos
Alcenos/química , Indenos/química , Indenos/síntese química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
11.
J Enzyme Inhib Med Chem ; 29(2): 223-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23432541

RESUMO

Hepatitis C virus nonstructural protein 3 (NS3) helicase is a promising target for developing new therapeutics. In this study, we identified cholesterol sulfate (CS) as a novel NS3 helicase inhibitor (IC50 = 1.7 ± 0.2 µM with a Hill coefficient of 3.9) by screening the extracts from marine organisms. The lack of the sulfate group, sterol structure or alkyl side chain of CS diminished the inhibition, suggesting that an anion binding and hydrophobic region in NS3 may be a target site of CS. It was further found that CS partly inhibits NS3-RNA binding activity, but exerted no or less inhibition against ATPase and serine protease activities. Moreover, we demonstrated that CS probably does not bind to RNA. Our findings suggest that CS may inhibit NS3 helicase not by abolishing the other NS3 activities but by inducing conformational changes via interaction with possible allosteric sites of NS3.


Assuntos
Antivirais/farmacologia , Ésteres do Colesterol/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Ésteres do Colesterol/isolamento & purificação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hepacivirus/enzimologia , Estrutura Molecular , Ligação Proteica , Serina Proteases/metabolismo
12.
Mar Drugs ; 12(1): 462-76, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451189

RESUMO

Hepatitis C virus (HCV) is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3) helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3) and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV) NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites) with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.


Assuntos
Hepacivirus/enzimologia , Naftalenos/química , Naftalenos/farmacologia , Poríferos/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sesterterpenos/química , Sesterterpenos/farmacologia , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Elétrons , Naftalenos/isolamento & purificação , RNA Viral/metabolismo , Serina Proteases/química , Sesterterpenos/isolamento & purificação , Ésteres do Ácido Sulfúrico/isolamento & purificação
13.
Chem Pharm Bull (Tokyo) ; 62(10): 989-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273057

RESUMO

The crystallization of phenytoin occurring after its dilution with infusion fluid is a major concern in the clinical use of injectable phenytoin. To gain further understanding of the crystallization, this study assessed details of the involvement of glucose in this action. For sample preparation, phenytoin crystals were created by diluting the injectable phenytoin with infusion fluids with different glucose concentrations at different temperature, and then the characteristics of the crystallization (e.g., crystal size in the long direction, accumulated amount over 24 h, and crystallization rate constant) were measured. Results of the analysis of variance indicated that the glucose concentration and temperature had significant impacts on the crystallization. The mode of action of the glucose concentration was suggested to be different from that of the incubation temperature. This study also examined the molecular mobility of components (i.e., glucose, propylene glycol, phenytoin) in the admixtures using diffusion NMR techniques. The findings will provide valuable information for the clinical use of injectable phenytoin.


Assuntos
Glucose/química , Fenitoína/química , Cristalização , Cinética , Espectroscopia de Ressonância Magnética , Propilenoglicol/química , Solubilidade , Temperatura
14.
Molecules ; 19(4): 4006-20, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699145

RESUMO

The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1) on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1) against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres Difenil Halogenados/farmacologia , Poríferos/química , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/química , Animais , Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Éteres Difenil Halogenados/isolamento & purificação , Hepacivirus/química , Hepacivirus/enzimologia , Humanos , RNA Helicases/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
15.
J Nat Prod ; 75(4): 650-4, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22394195

RESUMO

The hepatitis C virus (HCV) causes one of the most prevalent chronic infectious diseases in the world, hepatitis C, which ultimately develops into liver cancer through cirrhosis. The NS3 protein of HCV possesses nucleoside triphosphatase (NTPase) and RNA helicase activities. As both activities are essential for viral replication, NS3 is proposed as an ideal target for antiviral drug development. In this study, we identified manoalide (1) from marine sponge extracts as an RNA helicase inhibitor using a high-throughput screening photoinduced electron transfer (PET) system that we previously developed. Compound 1 inhibits the RNA helicase and ATPase activities of NS3 in a dose-dependent manner, with IC(50) values of 15 and 70 µM, respectively. Biochemical kinetic analysis demonstrated that 1 does not affect the apparent K(m) value (0.31 mM) of NS3 ATPase activity, suggesting that 1 acts as a noncompetitive inhibitor. The binding of NS3 to single-stranded RNA was inhibited by 1. Manoalide (1) also has the ability to inhibit the ATPase activity of human DHX36/RHAU, a putative RNA helicase. Taken together, we conclude that 1 inhibits the ATPase, RNA binding, and helicase activities of NS3 by targeting the helicase core domain conserved in both HCV NS3 and DHX36/RHAU.


Assuntos
Hepacivirus/metabolismo , Terpenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Bases , Humanos , Estrutura Molecular , Nucleosídeo-Trifosfatase/efeitos dos fármacos , Nucleosídeo-Trifosfatase/metabolismo , RNA Helicases/efeitos dos fármacos , RNA Helicases/metabolismo
16.
Mar Drugs ; 10(4): 744-761, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22690141

RESUMO

Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an in vitro fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star Alloeocomatella polycladia exhibited the strongest inhibition of NS3 helicase activity, with an IC(50) of 11.7 µg/mL. The extract of A. polycladia inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC(50) value of 23 to 44 µg/mL, which is similar to the IC(50) value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in A. polycladia can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C.


Assuntos
Antivirais/farmacologia , Organismos Aquáticos/química , Equinodermos/química , Hepacivirus/fisiologia , RNA Helicases/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Acetatos/química , Adenosina Trifosfatases/metabolismo , Animais , Antivirais/química , Antivirais/isolamento & purificação , Replicação do DNA/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Interferons/metabolismo , RNA Helicases/metabolismo , RNA Viral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Biol Pharm Bull ; 34(1): 13-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21212511

RESUMO

Saliva contains a large number of proteins that participate in the protection of oral tissue. Exosomes are small vesicles (30-100 nm in diameter) with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We have recently demonstrated that exosomes are present in human whole saliva. In this study, we found that whole saliva contained at least two types of exosomes (exosome I and exosome II) that are different in size and protein composition. Proteomic analysis revealed that both types of exosomes contained Alix, Tsg101 and Hsp70, all exosomal markers, immunoglobulin A and polymeric immunoglobulin receptor, whereas they had different protein compositions. Most of dipeptidyl peptidase IV known as CD26 in whole saliva, was present on the exosome II and metabolically active in cleaving chemokines (CXCL11 and CXCL12). Human whole saliva exosomes might participate in the catabolism of bioactive peptides and play a regulatory role in local immune defense in the oral cavity.


Assuntos
Exossomos/metabolismo , Proteômica , Saliva/química , Proteínas e Peptídeos Salivares/metabolismo , Biomarcadores , Exossomos/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas e Peptídeos Salivares/análise , Proteínas e Peptídeos Salivares/genética
18.
Antiviral Res ; 194: 105165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419484

RESUMO

The development of novel antivirals to treat hepatitis B virus (HBV) infection is still needed because currently available drugs do not completely eradicate chronic HBV in some patients. Recently, troglitazone and ciglitazone, classified among the compounds including the thiazolidinedione (TZD) moiety, were found to inhibit HBV infection, but these compounds are not clinically available. In this study, we synthesized 11 TZD derivatives, compounds 1-11, and examined the effect of each compound on HBV infection in HepG2 cells expressing NTCP (HepG2/NTCP cells). Among the derivatives, (Z)-5-((4'-(naphthalen-1-yl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidine-2,4-dione (compound 6) showed the highest antiviral activity, with an IC50 value of 0.3 µM and a selectivity index (SI) of 85, but compound 6 did not affect HCV infection. Treatment with compound 6 inhibited HBV infection in primary human hepatocytes (PHHs) but did not inhibit viral replication in HepG2.2.15 cells or HBV DNA-transfected Huh7 cells. Moreover, treatment with compound 6 significantly impaired hepatitis delta virus (HDV) infection and inhibited a step in HBV particle internalization but did not inhibit attachment of the preS1 lipopeptide or viral particles to the cell surface. These findings suggest that compound 6 interferes with HBV infection via inhibition of the internalization process.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Concentração Inibidora 50 , Tiazolidinedionas/síntese química
19.
Chem Asian J ; 15(24): 4271-4274, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33029940

RESUMO

Here we describe the diastereoselective synthesis of (5r,8r)-1,9-diazadispiro[4.2.48 .25 ]tetradecatrienes via domino double spirocyclization of N-arylamide derivatives. This reaction can serve as a fast way to synthesize diazadispirocycles, which are found in the core structures of bioactive natural products. Product diversification via Suzuki-Miyaura cross coupling and application to the synthesis of 1-oxa-9-azadispiro[4.2.48 .25 ]tetradecatrienes were also conducted.

20.
J Org Chem ; 74(3): 1422-5, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19093838

RESUMO

We have found that ruthenium-catalyzed cyclocarbonylation of allenyl alcohols in 2,4,6-collidine under atmospheric pressure of carbon monoxide smoothly proceeds to afford alpha,beta-unsaturated five- and six-membered lactones in moderate to good yields. Furthermore, we have completed a highly stereoselective synthesis of (+)-isomintlactone by the cyclocarbonylation of allenyl alcohol using 2,4,6-collidine.


Assuntos
Alcadienos/química , Cicloexanóis/química , Lactonas/síntese química , Terpenos/síntese química , Catálise , Ciclização , Piridinas/química , Rutênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA