Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(3): F326-F337, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205542

RESUMO

Acute kidney injury activates both proliferative and antiproliferative pathways, the consequences of which are not fully elucidated. If an initial proliferation of the renal epithelium is necessary for the successful repair, the persistence of proliferation markers is associated with the occurrence of chronic kidney disease. We hypothesized that proliferation in stress conditions impacts cell viability and renal outcomes. We found that proliferation is associated with cell death after various stresses in kidney cells. In vitro, the ATP/ADP ratio oscillates reproducibly throughout the cell cycle, and cell proliferation is associated with a decreased intracellular ATP/ADP ratio. In vivo, transcriptomic data from transplanted kidneys revealed that proliferation was strongly associated with a decrease in the expression of the mitochondria-encoded genes of the oxidative phosphorylation pathway, but not of the nucleus-encoded ones. These observations suggest that mitochondrial function is a limiting factor for energy production in proliferative kidney cells after injury. The association of increased proliferation and decreased mitochondrial function was indeed associated with poor renal outcomes. In summary, proliferation is an energy-demanding process impairing the cellular ability to cope with an injury, highlighting proliferative repair and metabolic recovery as indispensable and interdependent features for successful kidney repair.NEW & NOTEWORTHY ATP depletion is a hallmark of acute kidney injury. Proliferation is instrumental to kidney repair. We show that ATP levels vary during the cell cycle and that proliferation sensitizes renal epithelial cells to superimposed injuries in vitro. More proliferation and less energy production by the mitochondria are associated with adverse outcomes in injured kidney allografts. This suggests that controlling the timing of kidney repair might be beneficial to mitigate the extent of acute kidney injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Rim/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Proliferação de Células , Trifosfato de Adenosina/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
EMBO Rep ; 22(6): e51169, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34031962

RESUMO

Recent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts also induced production of alpha-smooth muscle actin (αSMA) and collagen 1. Knockout of COUP-TFII decreased glycolysis and collagen 1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.


Assuntos
Fator II de Transcrição COUP , Receptores Nucleares Órfãos , Animais , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Fibrose , Glicólise/genética , Rim , Camundongos , Camundongos Knockout , Miofibroblastos , Receptores Nucleares Órfãos/metabolismo , Proteômica
3.
Kidney Int ; 101(5): 845-853, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276204

RESUMO

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Assuntos
Injúria Renal Aguda , Rim , Injúria Renal Aguda/patologia , Feminino , Fibrose , Humanos , Inflamação/patologia , Rim/patologia , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneração , Estados Unidos
4.
Nat Methods ; 16(3): 255-262, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742039

RESUMO

Kidney organoids derived from human pluripotent stem cells have glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which expands their endogenous pool of endothelial progenitor cells and generates vascular networks with perfusable lumens surrounded by mural cells. We found that vascularized kidney organoids cultured under flow had more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression compared with that in static controls. Glomerular vascular development progressed through intermediate stages akin to those involved in the embryonic mammalian kidney's formation of capillary loops abutting foot processes. The association of vessels with these compartments was reduced after disruption of the endogenous VEGF gradient. The ability to induce substantial vascularization and morphological maturation of kidney organoids in vitro under flow opens new avenues for studies of kidney development, disease, and regeneration.


Assuntos
Rim/irrigação sanguínea , Organoides/crescimento & desenvolvimento , Células Cultivadas , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Órgãos , Impressão Tridimensional , Engenharia Tecidual
5.
Dev Biol ; 440(1): 13-21, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705331

RESUMO

Formation of a functional kidney depends on the balance between renewal and differentiation of nephron progenitors. Failure to sustain this balance can lead to kidney failure or stem cell tumors. For nearly 60 years, we have known that signals from an epithelial structure known as the ureteric bud were essential for maintaining this balance. More recently it was discovered that one molecule, Wnt9b, was necessary for both renewal and differentiation of the nephron progenitor cells. How one ligand signaling through one transcription factor promoted two seemingly contradictory cellular processes was unclear. In this study, we show that Wnt9b/beta-catenin signaling alone is sufficient to promote both renewal and differentiation. Moreover, we show that discrete levels of beta-catenin can promote these two disparate fates, with low levels fostering progenitor renewal and high levels driving differentiation. These results provide insight into how Wnt9b regulates distinct target genes that balance nephron progenitor renewal and differentiation.


Assuntos
Néfrons/fisiologia , beta Catenina/metabolismo , beta Catenina/fisiologia , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Néfrons/embriologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
6.
J Am Soc Nephrol ; 28(5): 1370-1378, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28096308

RESUMO

(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.


Assuntos
Rim/citologia , Rim/fisiologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Separação Celular/métodos , Humanos , Células-Tronco Pluripotentes Induzidas , Rim/crescimento & desenvolvimento , Regeneração , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais
7.
J Biol Chem ; 291(7): 3346-58, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26703468

RESUMO

After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.


Assuntos
Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Regeneração Hepática , Fígado/fisiologia , Receptores da Somatotropina/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitinação , Animais , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Hormônio do Crescimento/antagonistas & inibidores , Hormônio do Crescimento/metabolismo , Hepatectomia/efeitos adversos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/análise , Fígado/citologia , Fígado/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipófise/citologia , Hipófise/metabolismo , Transporte Proteico , Proteólise , Receptores da Somatotropina/agonistas , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
8.
Development ; 139(10): 1863-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22510988

RESUMO

Lengthy developmental programs generate cell diversity within an organotypic framework, enabling the later physiological actions of each organ system. Cell identity, cell diversity and cell function are determined by cell type-specific transcriptional programs; consequently, transcriptional regulatory factors are useful markers of emerging cellular complexity, and their expression patterns provide insights into the regulatory mechanisms at play. We performed a comprehensive genome-scale in situ expression screen of 921 transcriptional regulators in the developing mammalian urogenital system. Focusing on the kidney, analysis of regional-specific expression patterns identified novel markers and cell types associated with development and patterning of the urinary system. Furthermore, promoter analysis of synexpressed genes predicts transcriptional control mechanisms that regulate cell differentiation. The annotated informational resource (www.gudmap.org) will facilitate functional analysis of the mammalian kidney and provides useful information for the generation of novel genetic tools to manipulate emerging cell populations.


Assuntos
Sistema Urogenital/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Rim/metabolismo , Camundongos
9.
J Anat ; 226(1): 13-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25292187

RESUMO

This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of 'node retraction', in which the node of a 'Y'-shaped branch moves downwards, shortening the stalk of the 'Y', lengthening its arms and narrowing their divergence angle so that the 'Y' becomes a 'V'. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney.


Assuntos
Túbulos Renais Coletores/embriologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Simulação por Computador , Camundongos , Camundongos Transgênicos , Imagem com Lapso de Tempo
10.
J Am Soc Nephrol ; 25(6): 1211-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24357672

RESUMO

Human pluripotent stem cells (hPSCs) can generate a diversity of cell types, but few methods have been developed to derive cells of the kidney lineage. Here, we report a highly efficient system for differentiating human embryonic stem cells and induced pluripotent stem cells (referred to collectively as hPSCs) into cells expressing markers of the intermediate mesoderm (IM) that subsequently form tubule-like structures. Treatment of hPSCs with the glycogen synthase kinase-3ß inhibitor CHIR99021 induced BRACHYURY(+)MIXL1(+) mesendoderm differentiation with nearly 100% efficiency. In the absence of additional exogenous factors, CHIR99021-induced mesendodermal cells preferentially differentiated into cells expressing markers of lateral plate mesoderm with minimal IM differentiation. However, the sequential treatment of hPSCs with CHIR99021 followed by fibroblast growth factor-2 and retinoic acid generated PAX2(+)LHX1(+) cells with 70%-80% efficiency after 3 days of differentiation. Upon growth factor withdrawal, these PAX2(+)LHX1(+) cells gave rise to apically ciliated tubular structures that coexpressed the proximal tubule markers Lotus tetragonolobus lectin, N-cadherin, and kidney-specific protein and partially integrated into embryonic kidney explant cultures. With the addition of FGF9 and activin, PAX2(+)LHX1(+) cells specifically differentiated into cells expressing SIX2, SALL1, and WT1, markers of cap mesenchyme nephron progenitor cells. Our findings demonstrate the effective role of fibroblast growth factor signaling in inducing IM differentiation in hPSCs and establish the most rapid and efficient system whereby hPSCs can be differentiated into cells with features characteristic of kidney lineage cells.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/citologia , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Prepúcio do Pênis/citologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Fator de Transcrição PAX2/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Gravidez , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
11.
Development ; 138(19): 4245-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21852398

RESUMO

The primary excretory organ in vertebrates is the kidney, which is responsible for blood filtration, solute homeostasis and pH balance. These functions are carried out by specialized epithelial cells organized into tubules called nephrons. Each of these cell types arise during embryonic development from a mesenchymal stem cell pool through a process of mesenchymal-to-epithelial transition (MET) that requires sequential action of specific Wnt signals. Induction by Wnt9b directs cells to exit the stem cell niche and express Wnt4, which is both necessary and sufficient for the formation of epithelia. Without either factor, MET fails, nephrons do not form and newborn mice die owing to kidney failure. Ectopic Notch activation in stem cells induces mass differentiation and exhaustion of the stem cell pool. To investigate whether this reflected an interaction between Notch and Wnt, we employed a novel gene manipulation strategy in cultured embryonic kidneys. We show that Notch activation is capable of inducing MET in the absence of both Wnt4 and Wnt9b. Following MET, the presence of Notch directs cells primarily to the proximal tubule fate. Only nephron stem cells have the ability to undergo MET in response to Wnt or Notch, as activation in the closely related stromal mesenchyme has no inductive effect. These data demonstrate that stem cells for renal epithelia are uniquely poised to undergo MET, and that Notch activation can replace key inductive Wnt signals in this process. After MET, Notch provides an instructive signal directing cells towards the proximal tubule lineage at the expense of other renal epithelial fates.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Néfrons/embriologia , Receptores Notch/metabolismo , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Proteína Wnt4/metabolismo , Animais , Desdiferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Podócitos/citologia
12.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617362

RESUMO

Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.

13.
J Am Soc Nephrol ; 23(4): 674-86, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22343121

RESUMO

Nur77 and its family members Nurr1 and Nor-1 are inducible orphan nuclear receptors that orchestrate cellular responses to diverse extracellular signals. In epithelia, Nur77 can act as a potent proapoptotic molecule in response to cellular stress, suggesting a possible role for this nuclear receptor in the tissue response to injury. Here, we found that Nur77 promotes epithelial cell apoptosis after AKI. Injury of proximal tubular epithelial cells rapidly and strongly induced Nur77, Nor-1, and Nurr1 both in vitro and in vivo. After renal ischemia-reperfusion, Nurr77-deficient mice exhibited less apoptosis of tubular epithelial cells and better renal function than wild-type mice. Nur77-mediated renal injury involved a conformational change of Bcl2 and an increase in the protein levels of proapoptotic Bcl-xS. Ligand-activated retinoic acid receptors repressed Nur77 induction and function. Pretreatment of wild-type mice with retinoic acid before renal ischemia-reperfusion blunted the induction of Nur77, conferred protection of renal function, attenuated renal histologic injury, and reduced the expression of epithelial-derived proinflammatory cytokines. Retinoic acid also inhibited hypoxia-mediated induction of proinflammatory cytokines in cultured renal epithelial cells. Results obtained from proximal tubule cultures derived from Nur77-deficient mice suggested that the inhibition of Nur77 expression mediated the renoprotective effects of retinoic acid. In summary, Nur77 promotes epithelial apoptosis after ischemia-reperfusion injury, and retinoic acid-mediated inhibition of Nur77 expression is a promising therapeutic strategy for the prevention of AKI.


Assuntos
Injúria Renal Aguda/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Traumatismo por Reperfusão/prevenção & controle , Tretinoína/farmacologia , Injúria Renal Aguda/patologia , Animais , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Dimetil Sulfóxido/farmacologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Hibridização In Situ , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Distribuição Aleatória , Valores de Referência , Traumatismo por Reperfusão/patologia , Índice de Gravidade de Doença
14.
Nat Biotechnol ; 41(2): 252-261, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36038632

RESUMO

Directed differentiation of human pluripotent stem cells (hPSCs) into functional ureteric and collecting duct (CD) epithelia is essential to kidney regenerative medicine. Here we describe highly efficient, serum-free differentiation of hPSCs into ureteric bud (UB) organoids and functional CD cells. The hPSCs are first induced into pronephric progenitor cells at 90% efficiency and then aggregated into spheres with a molecular signature similar to the nephric duct. In a three-dimensional matrix, the spheres form UB organoids that exhibit branching morphogenesis similar to the fetal UB and correct distal tip localization of RET expression. Organoid-derived cells incorporate into the UB tips of the progenitor niche in chimeric fetal kidney explant culture. At later stages, the UB organoids differentiate into CD organoids, which contain >95% CD cell types as estimated by single-cell RNA sequencing. The CD epithelia demonstrate renal electrophysiologic functions, with ENaC-mediated vectorial sodium transport by principal cells and V-type ATPase proton pump activity by FOXI1-induced intercalated cells.


Assuntos
Células-Tronco Pluripotentes , Ureter , Humanos , Rim , Ureter/metabolismo , Diferenciação Celular , Organoides , Morfogênese , Fatores de Transcrição Forkhead/metabolismo
15.
Sci Adv ; 8(38): eabq0866, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129975

RESUMO

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.


Assuntos
Rim Policístico Autossômico Recessivo , Descoberta de Drogas , Drogas em Investigação , Humanos , Dispositivos Lab-On-A-Chip , Organoides/metabolismo , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia
16.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675394

RESUMO

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Assuntos
Nefropatias , Rim , Humanos , Rim/patologia , Nefropatias/metabolismo , Metabolômica/métodos , Proteômica/métodos , Transcriptoma
17.
Kidney Int ; 79(3): 317-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20944551

RESUMO

MicroRNAs (miRNAs) are a large and growing class of small, non-coding, regulatory RNAs that control gene expression predominantly at the post-transcriptional level. The production of most functional miRNAs depends on the enzymatic activity of Dicer, an RNase III class enzyme. To address the potential action of Dicer-dependent miRNAs in mammalian kidney development, we conditionally ablated Dicer function within cells of nephron lineage and the ureteric bud-derived collecting duct system. Six2Cre-mediated removal of Dicer activity from the progenitors of the nephron epithelium led to elevated apoptosis and premature termination of nephrogenesis. Thus, Dicer action is important for maintaining the viability of this critical self-renewing progenitor pool and, consequently, development of a normal nephron complement. HoxB7Cre-mediated removal of Dicer function from the ureteric bud epithelium led to the development of renal cysts. This was preceded by excessive cell proliferation and apoptosis, and accompanied by disrupted ciliogenesis within the ureteric bud epithelium. Dicer removal also disrupted branching morphogenesis with the phenotype correlating with downregulation of Wnt11 and c-Ret expression at ureteric tips. Thus Dicer, and by inference Dicer-dependent miRNA activity, have distinct regulatory roles within different components of the developing mouse kidney. Furthermore, an understanding of miRNA action may provide new insights into the etiology and pathogenesis of renal cyst-based kidney disease.


Assuntos
RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Néfrons/metabolismo , Ureter/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Proliferação de Células , Sobrevivência Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Endorribonucleases/deficiência , Endorribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Doenças Renais Císticas/embriologia , Doenças Renais Císticas/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Morfogênese , Mutação , Néfrons/embriologia , Fenótipo , Proteínas Proto-Oncogênicas c-ret/genética , RNA Mensageiro/metabolismo , Ribonuclease III , Células-Tronco/metabolismo , Ureter/embriologia , Proteínas Wnt
18.
Am J Pathol ; 176(1): 85-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20008127

RESUMO

Understanding the origin of myofibroblasts in kidney is of great interest because these cells are responsible for scar formation in fibrotic kidney disease. Recent studies suggest epithelial cells are an important source of myofibroblasts through a process described as the epithelial-to-mesenchymal transition; however, confirmatory studies in vivo are lacking. To quantitatively assess the contribution of renal epithelial cells to myofibroblasts, we used Cre/Lox techniques to genetically label and fate map renal epithelia in models of kidney fibrosis. Genetically labeled primary proximal epithelial cells cultured in vitro from these mice readily induce markers of myofibroblasts after transforming growth factor beta(1) treatment. However, using either red fluorescent protein or beta-galactosidase as fate markers, we found no evidence that epithelial cells migrate outside of the tubular basement membrane and differentiate into interstitial myofibroblasts in vivo. Thus, although renal epithelial cells can acquire mesenchymal markers in vitro, they do not directly contribute to interstitial myofibroblast cells in vivo. Lineage analysis shows that during nephrogenesis, FoxD1-positive((+)) mesenchymal cells give rise to adult CD73(+), platelet derived growth factor receptor beta(+), smooth muscle actin-negative interstitial pericytes, and these FoxD1-derivative interstitial cells expand and differentiate into smooth muscle actin(+) myofibroblasts during fibrosis, accounting for a large majority of myofibroblasts. These data indicate that therapeutic strategies directly targeting pericyte differentiation in vivo may productively impact fibrotic kidney disease.


Assuntos
Linhagem da Célula , Células Epiteliais/patologia , Fibroblastos/patologia , Rim/patologia , Pericitos/patologia , Actinas/metabolismo , Animais , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Pericitos/metabolismo , Regiões Promotoras Genéticas/genética , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
19.
Nat Cell Biol ; 23(11): 1117-1128, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750582

RESUMO

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.


Assuntos
Atlas como Assunto , Biologia Celular , Linhagem da Célula , Células/classificação , Análise de Célula Única , Biomarcadores/metabolismo , Células/metabolismo , Células/patologia , Gráficos por Computador , Doença , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Transcriptoma
20.
Dev Biol ; 332(2): 273-86, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19501082

RESUMO

While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.


Assuntos
Proliferação de Células , Rim/anatomia & histologia , Rim/embriologia , Mesoderma/fisiologia , Morfogênese/fisiologia , Néfrons/embriologia , Ureter , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Caderinas/genética , Caderinas/metabolismo , Calbindinas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Epitélio/fisiologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Rim/fisiologia , Proteínas com Homeodomínio LIM , Laminina/genética , Laminina/metabolismo , Camundongos , Néfrons/anatomia & histologia , Néfrons/fisiologia , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína G de Ligação ao Cálcio S100/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Fatores de Transcrição , Ureter/anatomia & histologia , Ureter/embriologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA