Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612740

RESUMO

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Assuntos
Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Xenoenxertos , Humanos , Lisina/metabolismo , Masculino , Metilação , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Transdução de Sinais
2.
Cell ; 174(4): 803-817.e16, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057114

RESUMO

Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.


Assuntos
Cromatina/metabolismo , Variações do Número de Cópias de DNA , Metilação de DNA , Histonas/metabolismo , Lisina/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ciclo Celular , Células HEK293 , Humanos , Proteína 2 de Ligação ao Retinoblastoma/genética
3.
Nature ; 619(7971): 851-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468633

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Neoplasias Pulmonares , Pulmão , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos Knockout , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Alelos , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Progressão da Doença , Linhagem da Célula , Regeneração , Autorrenovação Celular
5.
Cell ; 154(3): 541-55, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871696

RESUMO

Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.


Assuntos
Replicação do DNA , Dosagem de Genes , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/genética , Cromatina/metabolismo , Cromossomos Humanos Par 1 , Instabilidade Genômica , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Fase S
6.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31399344

RESUMO

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Sirtuínas/metabolismo , Elongação da Transcrição Genética , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Deleção de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/genética , Sirtuínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
7.
Genes Dev ; 29(10): 1018-31, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25995187

RESUMO

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.


Assuntos
Hipóxia Celular/fisiologia , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica , Animais , Quinases relacionadas a CDC2 e CDC28/genética , Hipóxia Celular/genética , Linhagem Celular , Proliferação de Células , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Peixe-Zebra
8.
Mol Cell ; 48(4): 491-507, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23200123

RESUMO

Histone lysine methylation has emerged as a critical player in the regulation of gene expression, cell cycle, genome stability, and nuclear architecture. Over the past decade, a tremendous amount of progress has led to the characterization of methyl modifications and the lysine methyltransferases (KMTs) and lysine demethylases (KDMs) that regulate them. Here, we review the discovery and characterization of the KMTs and KDMs and the methyl modifications they regulate. We discuss the localization of the KMTs and KDMs as well as the distribution of lysine methylation throughout the genome. We highlight how these data have shaped our view of lysine methylation as a key determinant of complex chromatin states. Finally, we discuss the regulation of KMTs and KDMs by proteasomal degradation, posttranscriptional mechanisms, and metabolic status. We propose key questions for the field and highlight areas that we predict will yield exciting discoveries in the years to come.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Animais , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Metilação
9.
Mol Cell ; 40(5): 736-48, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145482

RESUMO

The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.


Assuntos
Ciclo Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Citometria de Fluxo , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Transfecção
10.
Biochim Biophys Acta ; 1839(12): 1463-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24859469

RESUMO

In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation.


Assuntos
Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Animais , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética , Neoplasias/metabolismo
11.
Health Data Sci ; 4: 0126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645573

RESUMO

Background: Clinical trial is a crucial step in the development of a new therapy (e.g., medication) and is remarkably expensive and time-consuming. Forecasting the approval of clinical trials accurately would enable us to circumvent trials destined to fail, thereby allowing us to allocate more resources to therapies with better chances. However, existing approval prediction algorithms did not quantify the uncertainty and provide interpretability, limiting their usage in real-world clinical trial management. Methods: This paper quantifies uncertainty and improves interpretability in clinical trial approval predictions. We devised a selective classification approach and integrated it with the Hierarchical Interaction Network, the state-of-the-art clinical trial prediction model. Selective classification, encompassing a spectrum of methods for uncertainty quantification, empowers the model to withhold decision-making in the face of samples marked by ambiguity or low confidence. This approach not only amplifies the accuracy of predictions for the instances it chooses to classify but also notably enhances the model's interpretability. Results: Comprehensive experiments demonstrate that incorporating uncertainty markedly enhances the model's performance. Specifically, the proposed method achieved 32.37%, 21.43%, and 13.27% relative improvement on area under the precision-recall curve over the base model (Hierarchical Interaction Network) in phase I, II, and III trial approval predictions, respectively. For phase III trials, our method reaches 0.9022 area under the precision-recall curve scores. In addition, we show a case study of interpretability that helps domain experts to understand model's outcome. The code is publicly available at https://github.com/Vincent-1125/Uncertainty-Quantification-on-Clinical-Trial-Outcome-Prediction. Conclusion: Our approach not only measures model uncertainty but also greatly improves interpretability and performance for clinical trial approval prediction.

12.
J Biol Chem ; 287(8): 5366-78, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22184117

RESUMO

The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Receptor EphA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transativadores
13.
J Biol Chem ; 287(13): 10509-10524, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22315224

RESUMO

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene epigenetically silenced or deleted in many human cancers. HIC1 is involved in regulatory loops modulating p53- and E2F1-dependent cell survival, growth control, and stress responses. HIC1 is also essential for normal development because Hic1-deficient mice die perinatally and exhibit gross developmental defects throughout the second half of development. HIC1 encodes a transcriptional repressor with five C(2)H(2) zinc fingers mediating sequence-specific DNA binding and two repression domains: an N-terminal BTB/POZ domain and a central region recruiting CtBP and NuRD complexes. By yeast two-hybrid screening, we identified the Polycomb-like protein hPCL3 as a novel co-repressor for HIC1. Using multiple biochemical strategies, we demonstrated that HIC1 interacts with hPCL3 and its paralog PHF1 to form a stable complex with the PRC2 members EZH2, EED, and Suz12. Confirming the implication of HIC1 in Polycomb recruitment, we showed that HIC1 shares some of its target genes with PRC2, including ATOH1. Depletion of HIC1 by siRNA interference leads to a partial displacement of EZH2 from the ATOH1 promoter. Furthermore, in vivo, ATOH1 repression by HIC1 is associated with Polycomb activity during mouse cerebellar development. Thus, our results identify HIC1 as the first transcription factor in mammals able to recruit PRC2 to some target promoters through its interaction with Polycomb-like proteins.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cerebelo/embriologia , Cerebelo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
14.
J Biol Chem ; 287(8): 5379-89, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22194601

RESUMO

The transcriptional repressor HIC1 (Hypermethylated in Cancer 1) is a tumor suppressor gene inactivated in many human cancers including breast carcinomas. In this study, we show that HIC1 is a direct transcriptional repressor of ß-2 adrenergic receptor (ADRB2). Through promoter luciferase activity, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments, we demonstrate that ADRB2 is a direct target gene of HIC1, endogenously in WI-38 cells and following HIC1 re-expression in breast cancer cells. Agonist-mediated stimulation of ADRB2 increases the migration and invasion of highly malignant MDA-MB-231 breast cancer cells but these effects are abolished following HIC1 re-expression or specific down-regulation of ADRB2 by siRNA treatment. Our results suggest that early inactivation of HIC1 in breast carcinomas could predispose to stress-induced metastasis through up-regulation of the ß-2 adrenergic receptor.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Adrenérgicos beta 2/genética , Estresse Fisiológico , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Invasividade Neoplásica , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Adrenérgicos beta 2/deficiência , Estresse Fisiológico/genética
15.
Biochem Biophys Res Commun ; 430(1): 49-53, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23178572

RESUMO

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor involved in the regulation of growth control and DNA damage response. We previously demonstrated that p57Kip2; a member of the CIP/KIP family of CDK (cyclin dependent kinase) inhibitors (CKI); is a direct target gene of HIC1 in quiescent cells. Here we show that ectopic expression of HIC1 in MDA-MB-231 cells or its overexpression in BJ-Tert fibroblasts induces decreased mRNA and protein expression of p21 (CIP1/WAF1) another member of this CKI family that plays essential roles in the p53-mediated DNA damage response. Conversely, knock-down of endogenous HIC1 in BJ-Tert through RNA interference up-regulates p21 in basal conditions and further potentiates this CKI in response to apoptotic etoposide-induced DNA damage. Through promoter luciferase activity and chromatin immunoprecipitation (ChIP), we demonstrate that HIC1 is a direct transcriptional repressor of p21. Thus, our results further demonstrate that HIC1 is a key player in the regulation of the DNA damage response.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Genes Reporter , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Luciferases/genética , Interferência de RNA , Proteínas Repressoras/genética
16.
J Biol Chem ; 286(35): 30462-30470, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757720

RESUMO

Chromatin-modifying enzymes play a fundamental role in regulating chromatin structure so that DNA replication is spatially and temporally coordinated. For example, the lysine demethylase 4A/Jumonji domain-containing 2A (KDM4A/JMJD2A) is tightly regulated during the cell cycle. Overexpression of JMJD2A leads to altered replication timing and faster S phase progression. In this study, we demonstrate that degradation of JMJD2A is regulated by the proteasome. JMJD2A turnover is coordinated through the SKP1-Cul1-F-box ubiquitin ligase complex that contains cullin 1 and the F-box and leucine-rich repeat protein 4 (FbxL4). This complex interacted with JMJD2A. Ubiquitin overexpression restored turnover and blocked the JMJD2A-dependent faster S phase progression in a cullin 1-dependent manner. Furthermore, increased ubiquitin levels decreased JMJD2A occupancy and BrdU incorporation at target sites. This study highlights a finely tuned mechanism for regulating histone demethylase levels and emphasizes the need to tightly regulate chromatin modifiers so that the cell cycle occurs properly.


Assuntos
Proteínas F-Box/química , Histona Desmetilases com o Domínio Jumonji/química , Proteínas Quinases Associadas a Fase S/química , Ubiquitina-Proteína Ligases/química , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Cromatina/química , Proteínas Culina/química , Replicação do DNA , Histona Desmetilases/química , Humanos , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquitina/química
17.
STAR Protoc ; 3(1): 101209, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243385

RESUMO

Traditional replication timing (RT) experiments divide S phase into two phases: early and late. However, there is an increasing awareness that variation in RT can occur during the course of S phase and impact our understanding of RT patterns and regulation. Here, we describe a RT protocol in RPE-1 cells for collecting four phases within S and the library preparation that takes advantage of a commercial kit for methyl-DNA. This step allows BrdU-labeled DNA sequencing and assessment of RT genome wide. For complete details on the use and execution of this protocol, please refer to Van Rechem et al. (2021).


Assuntos
Período de Replicação do DNA , Replicação do DNA , Bromodesoxiuridina , Replicação do DNA/genética , Fase S/genética , Análise de Sequência de DNA
18.
STAR Protoc ; 3(2): 101243, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35310076

RESUMO

Classic approaches to characterizing cell cycle leverage chemicals or altered nucleotide pools, which could impact chromatin states at specific phases of the cell cycle. Such approaches could induce metabolic alterations and/or DNA damage, which could reshape protein recruitment and histone modifications. In this protocol, we describe ways to fix and sort cells across the cell cycle based on their DNA content. We further detail immunoprecipitation and library preparation, allowing analysis of the epigenome by chromatin immunoprecipitation sequencing (ChIP-seq) for small numbers of cells. For complete details on the use and execution of this protocol, please refer to Van Rechem et al. (2021).


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Ciclo Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Código das Histonas
19.
STAR Protoc ; 3(4): 101827, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36386876

RESUMO

Temporal profiling of DNA replication timing (RT) in combination with chromatin modifications, chromatin accessibility, and gene expression provides new insights into the causal relationships between chromatin and RT during cell cycle. Here, we describe a protocol for in-depth integrative computational analyses of Repli-seq, ATAC-seq, RNA-seq, and ChIP-seq or CUT&RUN data for multiple marks at various time points across cell cycle and changes in their interrelationships upon an experimental perturbation (e.g., knockdown or overexpression of a regulatory protein). For complete details on the use and execution of this protocol, please refer to Van Rechem et al. (2021).


Assuntos
Período de Replicação do DNA , Epigenômica , Transcriptoma , Fluxo de Trabalho , Cromatina/genética
20.
Cancer Res ; 82(16): 2829-2837, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35749589

RESUMO

Subunits from the chromatin remodelers mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) are mutated, deleted, or amplified in more than 40% of cancers. Understanding their functions in normal cells and the consequences of cancerous alterations will provide insight into developing new targeted therapies. Here we examined whether mSWI/SNF mutations increase cellular sensitivity to specific drugs. Taking advantage of the DepMap studies, we demonstrate that cancer cells harboring mutations of specific mSWI/SNF subunits exhibit a genetic dependency on translation factors and are sensitive to translation pathway inhibitors. Furthermore, mSWI/SNF subunits were present in the cytoplasm and interacted with the translation initiation machinery, and short-term inhibition and depletion of specific subunits decreased global translation, implicating a direct role for these factors in translation. Depletion of specific mSWI/SNF subunits also increased sensitivity to mTOR-PI3K inhibitors. In patient-derived breast cancer samples, mSWI/SNF subunits expression in both the nucleus and the cytoplasm was substantially altered. In conclusion, an unexpected cytoplasmic role for mSWI/SNF complexes in translation suggests potential new therapeutic opportunities for patients afflicted by cancers demonstrating alterations in their subunits. SIGNIFICANCE: This work establishes direct functions for mSWI/SNF in translation and demonstrates that alterations in mSWI/SNF confer a therapeutic vulnerability to translation pathway inhibitors in cancer cells.


Assuntos
Proteínas Cromossômicas não Histona , Neoplasias , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases , Ribossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA