Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
2.
Brain ; 146(11): 4766-4783, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37437211

RESUMO

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genética
5.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135330

RESUMO

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Assuntos
Atresia Esofágica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/complicações , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Atresia Esofágica/complicações , Exoma/genética , Sequenciamento do Exoma
6.
Hum Mutat ; 42(7): 811-817, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993607

RESUMO

Heterozygous intragenic loss-of-function mutations of ERF, encoding an ETS transcription factor, were previously reported to cause a novel craniosynostosis syndrome, suggesting that ERF is haploinsufficient. We describe six families harboring heterozygous deletions including, or near to, ERF, of which four were characterized by whole-genome sequencing and two by chromosomal microarray. Based on the severity of associated intellectual disability (ID), we identify three categories of ERF-associated deletions. The smallest (32 kb) and only inherited deletion included two additional centromeric genes and was not associated with ID. Three larger deletions (264-314 kb) that included at least five further centromeric genes were associated with moderate ID, suggesting that deletion of one or more of these five genes causes ID. The individual with the most severe ID had a more telomerically extending deletion, including CIC, a known ID gene. Children found to harbor ERF deletions should be referred for craniofacial assessment, to exclude occult raised intracranial pressure.


Assuntos
Cromossomos Humanos Par 19 , Deficiência Intelectual , Criança , Deleção Cromossômica , Haploinsuficiência , Heterozigoto , Humanos , Deficiência Intelectual/genética , Mutação , Proteínas Repressoras/genética
7.
Am J Hum Genet ; 103(5): 727-739, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388400

RESUMO

Primary defects in motile cilia result in dysfunction of the apparatus responsible for generating fluid flows. Defects in these mechanisms underlie disorders characterized by poor mucus clearance, resulting in susceptibility to chronic recurrent respiratory infections, often associated with infertility; laterality defects occur in about 50% of such individuals. Here we report biallelic variants in LRRC56 (known as oda8 in Chlamydomonas) identified in three unrelated families. The phenotype comprises laterality defects and chronic pulmonary infections. High-speed video microscopy of cultured epithelial cells from an affected individual showed severely dyskinetic cilia but no obvious ultra-structural abnormalities on routine transmission electron microscopy (TEM). Further investigation revealed that LRRC56 interacts with the intraflagellar transport (IFT) protein IFT88. The link with IFT was interrogated in Trypanosoma brucei. In this protist, LRRC56 is recruited to the cilium during axoneme construction, where it co-localizes with IFT trains and is required for the addition of dynein arms to the distal end of the flagellum. In T. brucei carrying LRRC56-null mutations, or a variant resulting in the p.Leu259Pro substitution corresponding to the p.Leu140Pro variant seen in one of the affected families, we observed abnormal ciliary beat patterns and an absence of outer dynein arms restricted to the distal portion of the axoneme. Together, our findings confirm that deleterious variants in LRRC56 result in a human disease and suggest that this protein has a likely role in dynein transport during cilia assembly that is evolutionarily important for cilia motility.


Assuntos
Transporte Biológico/genética , Flagelos/genética , Depuração Mucociliar/genética , Mutação/genética , Proteínas/genética , Adulto , Alelos , Axonema/genética , Linhagem Celular , Chlamydomonas/genética , Cílios/genética , Dineínas/genética , Células Epiteliais/patologia , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Fenótipo , Trypanosoma brucei brucei/genética
8.
Genet Med ; 23(5): 881-887, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33473207

RESUMO

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Sequenciamento do Exoma
9.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515017

RESUMO

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Feto/diagnóstico por imagem , Variação Genética/genética , Células HEK293 , Humanos , Lactente , Masculino
10.
Am J Med Genet A ; 185(8): 2445-2454, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032352

RESUMO

Smith-Kingsmore Syndrome (SKS) is a rare genetic syndrome associated with megalencephaly, a variable intellectual disability, autism spectrum disorder, and MTOR gain of function variants. Only 30 patients with MTOR missense variants are published, including 14 (47%) with the MTOR c.5395G>A p.(Glu1799Lys) variant. Limited phenotypic data impacts the quality of information delivered to families and the robustness of interpretation of novel MTOR missense variation. This study aims to improve our understanding of the SKS phenotype through the investigation of 16 further patients with the MTOR c.5395G>A p.(Glu1799Lys) variant. Through the careful phenotypic evaluation of these 16 patients and integration with data from 14 previously reported patients, we have defined major (100% patients) and frequent (>15%) SKS clinical characteristics and, using these data, proposed guidance for evidence-based management. In addition, in the absence of functional studies, we suggest that the combination of the SKS major clinical features of megalencephaly (where the head circumference is at least 3SD) and an intellectual disability with a de novo MTOR missense variant (absent from population databases) should be considered diagnostic for SKS.


Assuntos
Alelos , Estudos de Associação Genética , Mutação de Sentido Incorreto , Fenótipo , Serina-Treonina Quinases TOR/genética , Adolescente , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Fácies , Feminino , Loci Gênicos , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Megalencefalia/diagnóstico , Megalencefalia/genética , Síndrome
11.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
12.
Lancet ; 393(10173): 747-757, 2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30712880

RESUMO

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Assuntos
Cariótipo Anormal/estatística & dados numéricos , Anormalidades Congênitas/genética , Sequenciamento do Exoma/estatística & dados numéricos , Desenvolvimento Fetal/genética , Feto/anormalidades , Cariótipo Anormal/embriologia , Aborto Eugênico/estatística & dados numéricos , Aborto Espontâneo/epidemiologia , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/epidemiologia , Variações do Número de Cópias de DNA/genética , Feminino , Feto/diagnóstico por imagem , Humanos , Recém-Nascido , Nascido Vivo/epidemiologia , Masculino , Medição da Translucência Nucal , Pais , Morte Perinatal/etiologia , Gravidez , Estudos Prospectivos , Natimorto/epidemiologia , Sequenciamento do Exoma/métodos
13.
Genome Res ; 27(10): 1704-1714, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855261

RESUMO

Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements.


Assuntos
Exoma , Genoma Humano , Mosaicismo , Análise de Sequência de DNA/métodos , Feminino , Humanos , Masculino , Análise de Sequência de DNA/instrumentação
14.
Genet Med ; 22(1): 124-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316167

RESUMO

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Assuntos
Aracnodactilia/diagnóstico , Contratura/diagnóstico , Fibrilina-2/genética , Análise de Sequência de DNA/métodos , Aracnodactilia/genética , Criança , Contratura/genética , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Testes Genéticos , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenótipo , Estudos Retrospectivos , Sensibilidade e Especificidade
15.
Genet Med ; 21(7): 1667-1671, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30783266

RESUMO

The article has been corrected to account for one patient being investigated through genome sequencing rather than exome sequencing as originally published; thus amendments to the Abstract and Methods have been made as well as addition of the relevant authors and acknowledgment.

16.
Genet Med ; 21(6): 1308-1318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30356099

RESUMO

PURPOSE: Germline WWOX pathogenic variants have been associated with disorder of sex differentiation (DSD), spinocerebellar ataxia (SCA), and WWOX-related epileptic encephalopathy (WOREE syndrome). We review clinical and molecular data on WWOX-related disorders, further describing WOREE syndrome and phenotype/genotype correlations. METHODS: We report clinical and molecular findings in 20 additional patients from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants in the WWOX gene. Different molecular screening approaches were used (quantitative polymerase chain reaction/multiplex ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome sequencing), genome sequencing. RESULTS: Two copy-number variations (CNVs) or two single-nucleotide variations (SNVs) were found respectively in four and nine families, with compound heterozygosity for one SNV and one CNV in five families. Eight novel missense pathogenic variants have been described. By aggregating our patients with all cases reported in the literature, 37 patients from 27 families with WOREE syndrome are known. This review suggests WOREE syndrome is a very severe epileptic encephalopathy characterized by absence of language development and acquisition of walking, early-onset drug-resistant seizures, ophthalmological involvement, and a high likelihood of premature death. The most severe clinical presentation seems to be associated with null genotypes. CONCLUSION: Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic encephalopathy. We report here the largest cohort of individuals with WOREE syndrome.


Assuntos
Síndromes Epilépticas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/fisiologia , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Síndrome , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
17.
Am J Med Genet A ; 179(4): 615-627, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30758909

RESUMO

Mutations in the ERF gene, coding for ETS2 repressor factor, a member of the ETS family of transcription factors cause a recently recognized syndromic form of craniosynostosis (CRS4) with facial dysmorphism, Chiari-1 malformation, speech and language delay, and learning difficulties and/or behavioral problems. The overall prevalence of ERF mutations in patients with syndromic craniosynostosis is around 2%, and 0.7% in clinically nonsyndromic craniosynostosis. Here, we present findings from 16 unrelated probands with ERF-related craniosynostosis, with additional data from 20 family members sharing the mutations. Most of the probands exhibited multisutural (including pan-) synostosis but a pattern involving the sagittal and lambdoid sutures (Mercedes-Benz pattern) predominated. Importantly the craniosynostosis was often postnatal in onset, insidious and progressive with subtle effects on head morphology resulting in a median age at presentation of 42 months among the probands and, in some instances, permanent visual impairment due to unsuspected raised intracranial pressure (ICP). Facial dysmorphism (exhibited by all of the probands and many of the affected relatives) took the form of orbital hypertelorism, mild exorbitism and malar hypoplasia resembling Crouzon syndrome but, importantly, a Class I occlusal relationship. Speech delay, poor gross and/or fine motor control, hyperactivity and poor concentration were common. Cranial vault surgery for raised ICP and/or Chiari-1 malformation was expected when multisutural synostosis was observed. Variable expressivity and nonpenetrance among genetically affected relatives was encountered. These observations form the most complete phenotypic and developmental profile of this recently identified craniosynostosis syndrome yet described and have important implications for surgical intervention and follow-up.


Assuntos
Craniossinostoses/genética , Craniossinostoses/patologia , Mutação , Proteínas Repressoras/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome , Adulto Jovem
18.
Am J Hum Genet ; 97(2): 343-52, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26235985

RESUMO

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Caracteres Sexuais , Via de Sinalização Wnt/genética , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Exoma/genética , Feminino , Dosagem de Genes/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA , Peixe-Zebra
19.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
20.
Hum Mol Genet ; 24(10): 2733-45, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25634561

RESUMO

Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2-1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case-control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e - 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e - 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic-phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Estrutural do Genoma , Perda de Heterozigosidade , Mosaicismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA