RESUMO
BACKGROUND: The antibody against proteasome subunit alpha type 1 (PSMA1) is a podocyte autoantibody in idiopathic nephrotic syndrome (INS) children identified in our previous study. The aim of this study was to explore the characteristics of INS in children and the mechanism underlying its involvement in the development of INS. METHODS: The levels of serum anti-PSMA1 autoantibodies in children were detected via protein microarray and compared among different disease groups. The recombinant PSMA1 protein was injected subcutaneously and intraperitoneally into mice to observe glomerular morphology and function. The PSMA1-knockdown and PSMA1-overexpressing cell lines were constructed from mouse podocytes, and their cytoskeleton and function were analyzed. Homozygous zebrafish with psma1 knockout were observed. RESULTS: The levels of serum anti-PSMA1 autoantibodies were higher in INS children and varied with urinary protein. In mice immunized with PSMA1, the presence of serum anti-PSMA1 autoantibody caused albuminuria and damage to the glomerular filtration membrane. Deficiency of PSMA1 impaired the podocyte cytoskeleton and physiological function. Complete deletion of psma1 caused edema, abnormal glomerular morphology and effacement of foot processes in zebrafish. CONCLUSIONS: PSMA1 played an important role in the maintenance of podocyte morphology and function.
RESUMO
Numerous defects exist at the buried interface between the perovskite and adjacent electron transport layers in perovskite solar cells, resulting in severe non-radiative recombination and excessive open-circuit voltage (VOC) loss. Herein, a dual defect passivation strategy utilizing guanidine sulfate (GUA2SO4) as an interface modifier is first reported. On the one hand, the SO4 2- preferentially interacts with Pb-related defects, generating water-insoluble lead oxysalts complexes. Additionally, GUA+ diffuses into the perovskite and induces the formation of low-dimensional perovskite. These reactions effectively suppress trap states at the buried interface and perovskite boundaries in printable mesoscopic perovskite solar cells (p-MPSCs), thus increasing the carrier lifetime. Meanwhile, GUA2SO4 optimizes the interface energy band alignment, thus accelerating the charge extraction and transfer at the buried interface. This synergistic effect of trap passivation and interface energy band alignment modulation is strongly demonstrated by an increase in average VOC of 70 mV and the power conversion efficiency improvement from 17.51% to 18.70%. This work provides a novel approach to efficiently improve the performance of p-MPSCs through dual-targeted defect passivation at the buried interface.
RESUMO
Koumine (KM) has anxiolytic, anti-inflammatory and growth-promoting effects in pigs and sheep. Based on the growth-promoting and immunological effects of koumine, the present study was conducted on Cyprinus carpio (C. carpio) with four KM concentrations: 0 mg/kg, 0.2 mg/kg, 2 mg/kg, and 20 mg/kg for 10 weeks, followed by a 1-week Aeromonas hydrophila (A. hydrophila) infection experiment. The effect of KM on the immunity of A. hydrophila infected carp was analyzed by histopathology, biochemical assay, and qRT-PCR to assess the feasibility of KM in aquaculture. The results showed that the presence of KM alleviated pathogen damage to carp tissues. At 2 mg/kg and 20 mg/kg concentrations of KM successively and significantly elevated (p < 0.05) the SOD activities in the intestinal tract, hepatopancreas and kidney of carp. The expression levels of hepatopancreatic antioxidant genes Nrf2 and IGF-1 were significantly up-regulated in the same group (p < 0.05), while the expression levels of immune genes IL-8 and IL-10 were down-regulated. In summary, KM at concentrations of 2 mg/kg and 20 mg/kg could regulate the expression of antioxidant and immune genes in various tissues in an orderly and rapid manner, and significantly improve the antioxidant and immune abilities of carp, which is conducive to the improvement of the resilience of carp.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Ovinos , Suínos , Antioxidantes/metabolismo , Imunidade Inata/genética , Carpas/metabolismo , Aeromonas hydrophila/metabolismo , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais/análiseRESUMO
An antibody-drug conjugate (ADC) of human epidermal growth factor receptor-2 (HER2) provides effective treatment for patients with HER2-positive non-small cell lung cancer (NSCLC). Exon 20 insertion mutations are the most common among HER2 mutations. This mutant subtype is highly drug-resistant, and patients receiving conventional treatment often have a poor prognosis. Trastuzumab deruxtecan (T-DXd), a novel anti-HER2 ADC, has emerged as a novel treatment option for HER2-positive (mutated, expressed, amplified, alternated) NSCLC, based on several studies and reported results. Herein, we report a case of stage IV NSCLC with HER2 exon 20 mutation in a 52-year-old male patient whose tumor recurred after radical resection of pulmonary carcinoma, who could not tolerate chemotherapy, and presented with bone metastasis. After treatment with T-DXd, the tumor significantly regressed and bone metastasis improved, maintaining a state of no progression for 21 months. This case report evidences the use of T-DXd in the treatment of NSCLC with HER2 exon 20 insertion mutation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoconjugados , Neoplasias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Mutagênese Insercional , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Trastuzumab/uso terapêutico , Camptotecina , Receptor ErbB-2/genética , ÉxonsRESUMO
IL-37 is a newly discovered member of the IL-1 cytokine family which plays an important role in regulating inflammation and maintaining physiological homeostasis. IL-37 showed a close relationship with IL-18, another key cytokine in inflammation regulation and cancer development. IL-37 affects the function of IL-18 either by binding to IL-18Rα, a key subunit of both IL-37 and IL-18 receptor, or by drastically neutralizing the IL-18 protein expression of IL-18 binding protein, an important natural inhibitory molecule of IL-18. Moreover, as another subunit receptor of IL-37, IL-1R8 can suppress IL-18Rα expression, functioning as a surveillance mechanism to prevent overactivation of both IL-18 and IL-37 signaling pathways. While IL-18 and IL-37 share the same receptor subunit, IL-18 would in turn interfere with IL-37 signal transduction by binding to IL-18Rα. It is also reported that IL-18 and IL-37 demonstrated opposing effects in a variety of cancers, such as glioblastoma, lung cancer, leukemia, and hepatocellular cancer. Although the mutual regulation of IL-18 and IL-37 and their diametrically opposed effects in cancers has been reported, IL-18 has not been taken into consideration when interpreting clinical findings and conducting mechanism investigations related to IL-37 in cancer. We aim to review the recent progress in IL-18 and IL-37 research in cancer and summarize the correlation between IL-18 and IL-37 in cancer based on their expression level and underlying mechanisms, which would provide new insights into elucidating the conflicting roles of IL-18 and IL-37 in cancer and bring new ideas for translational research related to IL-18 and IL-37.
Assuntos
Interleucina-18 , Neoplasias , Humanos , Interleucina-18/metabolismo , Citocinas , Transdução de Sinais , InflamaçãoRESUMO
AIM: Saliva can reflect an individual's physiological status or susceptibility to systemic disease. However, little attention has been given to salivary analysis in children with idiopathic nephrotic syndrome (INS). We aimed to perform a comprehensive analysis of saliva from INS children. METHODS: A total of 18 children (9 children with INS and 9 normal controls) were recruited. Saliva was collected from each INS patient in the acute and remission phases. 16S rRNA gene sequencing, widely targeted metabolomics, and 4D-DIA proteomics were performed. RESULTS: Actinobacteria and Firmicutes were significantly enriched in the pretreatment group compared with the normal control group, while Bacteroidota and Proteobacteria were significantly decreased. A total of 146 metabolites were identified as significantly different between INS children before treatment and normal controls, which covers 17 of 23 categories. KEGG enrichment analysis revealed three significantly enriched pathways, including ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and terpenoid backbone biosynthesis (P < 0.05). A total of 389 differentially expressed proteins were selected between INS children before treatment and normal controls. According to the KEGG and GO enrichment analyses of the KOGs, abnormal ribosome structure and function and humoral immune disorders were the most prominent differences between INS patients and normal controls in the proteomic analysis. CONCLUSION: Oral microbiota dysbiosis may modulate the metabolic profile of saliva in children with INS. It is hypothesized that children with INS might have "abnormal ribosome structure and function" and "humoral immune disorders".
Assuntos
Disbiose , Multiômica , Síndrome Nefrótica , Saliva , Criança , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Disbiose/diagnóstico , Disbiose/metabolismo , Disbiose/microbiologia , Metabolômica/métodos , Multiômica/métodos , Síndrome Nefrótica/microbiologia , Síndrome Nefrótica/metabolismo , Proteômica/métodos , RNA Ribossômico 16S/genética , Saliva/microbiologia , Saliva/metabolismoRESUMO
The age, growth, reproduction and resource development status of Ptychidio jordani, as a critically endangered freshwater fish in the Hongshui River, China, was studied in this work. A total of 525 specimens were collected monthly using the cages and gillnets from October 2021 to September 2022 in the Hongshui River. The scale was used for age determination, and the maximum age for both female and male was estimated to be 5 years and 3 years, respectively. Female and male P. jordani showed different growth patterns, which were expressed as Lt = 261.3 (1-e-0.4885(t-0.1476) ) and Lt = 251.2 (1-e-0.4758(t+0.9643) ), respectively. The overall sex ratio was 1:0.47 (female:male). Female attained sex maturity at 2.34 years (192 mm body length). Month variation of the gonad somatic index indicated that the spawning period occurred from April to October. The absolute fecundity was estimated at 9046 ± 3434 eggs per individual, and the relative fecundity was 38.08 ± 15.77 eggs per gram. The exploitation rate of female and male was 0.233 and 0.495, which indicated that P. jordani was not overfishing. This study provided data on the key life-history traits of P. jordani, which has not been known previously and is essential for conservation strategy and policy development.
Assuntos
Reprodução , Rios , Feminino , Masculino , Animais , Fertilidade , Água Doce , Peixes , Estações do AnoRESUMO
Environmental pollutants are closely linked to lung cancer. The different types of environmental pollutants can be classified as chemical, physical, and biological. The roles of common chemical and physical pollutants such as PM2.5, smoking, radon, asbestos, and formaldehyde in lung cancer have been extensively studied. Notably, the worldwide COVID-19 pandemic raised awareness of the strong link between biological pollution and human health. Allergens such as house dust mites and pollen, as well as bacteria and viruses, are common biological pollutants. A few biological pollutants have been reported to promote lung cancer via inducing inflammatory cytokines secretion, such as IL-1ß, IL-6, and TGF-ß, as well as suppressing immunosurveillance by upregulating regulatory T (Treg) cells while dampening the function of CD8+ T cells and dendritic cells. However, the correlation between common biological hazards, such as SARS-CoV-2, human immunodeficiency viruses, Helicobacter pylori, and house dust mites, and lung cancer is not fully elucidated, and the underlying mechanisms are still unclear. Moreover, the majority of studies that have been performed in lung cancer and biological carcinogens were not based on the perspective of biological pollutants, which has challenged the systematicity and coherence in the field of biological pollutants in lung cancer. Here, in addition to reviewing the recent progress made in investigating the roles of allergens, viruses, and bacteria in lung cancer, we summarized the potential mechanisms underlying biological pollutants in lung cancer. Our narrative review can shed light on understanding the significance of biological pollutants in lung cancer, as well as inspire and broaden research ideas on lung cancer etiology.
Assuntos
Poluentes Ambientais , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Linfócitos T CD8-Positivos , Pandemias , Alérgenos , PyroglyphidaeRESUMO
Idiopathic nephrotic syndrome (INS) is a common renal disease characterized by disruption of the glomerular filtration barrier. In a previous study, we screened and identified podocyte autoantibodies in nephrotic syndrome patients and proposed the concept of autoimmune podocytopathy. However, circulating podocyte autoantibodies cannot reach podocytes unless glomerular endothelial cells have been damaged. Therefore, we speculate that INS patients may also have autoantibodies against vascular endothelial cells. Sera from INS patients were used as primary antibodies to screen and identify endothelial autoantibodies by hybridization with vascular endothelial cell proteins separated by two-dimensional electrophoresis. The clinical application value and pathogenicity of these autoantibodies were further verified by clinical study and in vivo and in vitro experiments. Nine kinds of autoantibodies against vascular endothelial cells were screened in patients with INS, which can cause endothelial cell damage. In addition, 89% of these patients were positive for at least one autoantibody.
Assuntos
Nefrose Lipoide , Síndrome Nefrótica , Podócitos , Humanos , Autoanticorpos , Células Endoteliais , Nefrose Lipoide/metabolismoRESUMO
In this study, using PM6:L8-BO as the main system and non-fullerene acceptor IDIC as the third component, a series of ternary organic solar cells (TOSCs) are fabricated. The results reveal that IDIC plays a significant role in enhancing the performance of TOSCs by optimizing the morphology of blended films and forming interpenetrating nanostructure. The improved film morphology facilitates exciton dissociation and collection in TOSCs, which causes an increase in the short-circuit current density (JSC ) and fill factor (FF). Further, by optimizing the IDIC content, the power conversion efficiency (PCE) of TOSCs reaches 18.9%. Besides, the prepared TOSCs exhibit a JSC of 27.51 mA cm-2 and FF of 76.64%, which are much higher than those of PM6:L8-BO-based organic solar cells (OSCs). Furthermore, the addition of IDIC improves the long-term stability of the OSCs. Meanwhile, TOSCs with a large effective area of 1.00 cm2 have been prepared, which exhibit a PCE of 12.4%. These findings suggest that modifying the amount of the third component can be a useful strategy to construct hight-efficiency TOSCs with practical application potential.
RESUMO
Koumine is an alkaloid with significant anti-anxiety, anticancer cell proliferation, and analgesic activities, and our previous studies have shown that koumine can be used as an immunostimulant in aquaculture, but the molecular mechanism of its effect remains unclear. We fed a basal diet with 0, 0.2, 2, and 20 mg/kg koumine to C. carpio for 10 weeks, and comprehensive studies of the histological and biochemical parameters and transcriptomes of the four groups were performed. Histological results indicated that the number of apoptotic cells in the liver increased with increasing koumine concentration. Compared with those of the control group, the malondialdehyde, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase, and lactate dehydrogenase levels of the treatment group increased to varying degrees. In total, 100.11 GB of clean data, 4774 DEGs, and 138 differentially expressed genes were obtained from the transcriptome data. Differentially expressed genes were classified into 187 signalling pathways, and the circadian rhythm signalling pathway, the JAK-STAT signalling pathway, the p53 signalling pathway and the PPAR signalling pathway were the top enriched pathways. The qRT-PCR results confirmed that the key genes ifnar1, socs3l, epoa, ghra, cMyc, mcl-1, shisa4, and gtse1 involved in balancing cell proliferation and apoptosis were enriched in these pathways. We discovered that the JAK-STAT and p53 pathways are important targets of koumine. Such information contributes to a better understanding of the potential mechanism by which koumine regulates hepatic immunity as well as to lays the theoretical foundation for its application.
Assuntos
Carpas , Animais , Carpas/genética , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/fisiologia , Apoptose , FígadoRESUMO
A variety of non-pharmaceutical interventions (NPIs) have been implemented to control the transmission of COVID-19 in China. The effect of NPIs on other common respiratory viruses in children of different age groups has not been examined thus far. Respiratory specimens of children were collected to detect common childhood respiratory viruses, including influenza A (FluA), influenza B (FluB), adenovirus, and respiratory syncytial virus (RSV), at the Children's Hospital of Zhejiang University School of Medicine from January 1, 2019 to December 31, 2020. The epidemiological characteristics of the respiratory viruses in 2020 were compared with those in 2019. From January 2019 to December 2020, 165 622 specimens were collected. The proportion of infants aged 0-28 days (683, 2.24% vs. 1295, 0.96%, p = 0.000) and 1-12 months (8560, 28.12% vs. 20 875, 15.43%, p = 0.000) in 2020 increased significantly compared with that in 2019. There were two obvious increases in April and September in the number of specimens in children aged 4-6 years and >7 years. FluA, FluB, and RSV's age distribution patterns were surprisingly consistent with each other in 2020, and the positive rates of children aged 1-12 months were the highest in all age groups (FluA: 4.45%, FluB: 3.30%, RSV: 7.35%). Our study further confirms that the NPIs significantly decreased the transmission of common childhood respiratory viruses. The change in circulation characteristics of common respiratory viruses of children in different age groups varied. Therefore, we recommend that different protection strategies should be introduced for children of different age groups.
Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pandemias , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções Respiratórias/epidemiologia , Adulto JovemRESUMO
The purpose of this study was to evaluate the effects of partial replacement of dietary flour meal with seaweed polysaccharides on survival rate, histology, intestinal oxidative stress levels, and expression of immune-related genes in hybrid snakeheads under acute ammonia stress. Four experimental diets were set: (C) basal diet with 0% of seaweed polysaccharides as the control group, (MR) basal diet with 10% of seaweed polysaccharides, (HR) basal diet with 15% of seaweed polysaccharides, (HF) basal diet with 10% of fish oil. After 60 days of feeding, fish fed with the diet of C group were sampled as the control group, and other fish were exposed to ammonia nitrogen for 48 h. Two concentrations of total ammonia nitrogen (TAN) were used in this study: 120 mg/L TAN (low concentration exposure group), and 1200 mg/L TAN (high concentration exposure group). After exposure to ammonia nitrogen for 48 h, fish were sampled. The results indicated that adding seaweed polysaccharides to the diet could improve the survival rate of hybrid snakeheads under high concentration of ammonia stress. Histopathological analysis demonstrated multiple abnormalities in gills and intestines after exposure to two concentrations of TAN. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lactate dehydrogenase (LDH) were all increased in the MR group under two concentrations of TAN stress. The mRNA abundance of immune-related genes in fish intestinal tissues was significantly induced or inhibited. These results suggested that partial replacement of dietary flour meal with seaweed polysaccharides improved the ability of hybrid snakeheads to resist ammonia stress.
Assuntos
Amônia , Alga Marinha , Animais , Amônia/farmacologia , Ração Animal/análise , Dieta/veterinária , Peixes/genética , Farinha , Intestinos , Nitrogênio/farmacologia , Polissacarídeos/farmacologia , VerdurasRESUMO
OBJECTIVES: Although Mesencephalic astrocyte-derived neurotrophic factor (MANF) shows protection in multiple cells, the role of circulating MANF in patients with acute ischemic stroke (AIS) and transient ischemic attack (TIA) remains unclear. Here, we aimed to explore the value of circulating MANF levels in cerebral ischemic events. MATERIALS AND METHODS: Using a rat cerebral ischemic model, MANF expression in ischemic brains and serum was detected. 50 AIS patients, 56 TIA patients and 48 controls were enrolled, and MANF mRNA, inflammatory cytokines and MANF concentrations in serum and different blood cell types were detected. The National Institutes of Health Stroke Scale (NIHSS) score and Alberta Stroke Program Early CT Score (ASPECTS) were used to evaluate stroke severity. Cerebrovascular recurrence within 90 d was documented during TIA follow-up. RESULTS: MANF expression increased at 2h, peaking at 24h and decreased to baseline at 7d in rat ischemic brains and serum. Serum MANF concentrations increased at 24h and 7d in AIS patients compared to controls and were correlated with NIHSS score, ASPECTS and inflammatory cytokines. MANF protein was present in blood cells, while MANF mRNA levels did not differ between AIS patients and controls. MANF levels revealed a good value to diagnose TIA with area under the curve (AUC) of 0.949 (95% CI: 0.9093-0.9892). MANF levels were lower in TIA patients with recurrence compared to non-recurrence patients. The AUC for MANF to predict a re-event was 0.80 (95% CI: 0.6746-0.9282). CONCLUSIONS: Serum MANF levels correlate with neuroprotection, stroke severity, inflammation, and TIA recurrence.
Assuntos
Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , AVC Isquêmico/diagnóstico , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/metabolismo , Astrócitos/metabolismo , Fatores de Crescimento Neural/genética , Acidente Vascular Cerebral/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismoRESUMO
Gelsemium elegans Benth. (GEB) is a traditional medicinal plant in China, and acts as a growth promoter in pigs and goats. Koumine (KM) is the most abundant alkaloid in GEB and produces analgesic, anti-cancer, and immunomodulatory effects. KM can be used as an aquatic immune stimulant, but its growth-promoting effects and transcriptional mechanisms have not been investigated. Diets containing KM at 0, 0.2, 2, and 20 mg/kg were fed to Cyprinus carpio for 71 days to investigate its effects on growth performance, intestinal morphology, microflora, biochemical indicators, and transcriptional mechanisms. Cyprinus carpio fed with KM as the growth promoter, and the number of intestinal crypts and intestinal microbial populations were influenced by KM concentration. KM increased the abundance of colonies of Afipia, Phyllobacterium, Mesorhizobium, and Labrys, which were associated with compound decomposition and proliferation, and decreased the abundance of colonies of pathogenic bacteria Methylobacterium-Methylorubrum. A total of 376 differentially-expressed genes (DEGs) among the four experimental groups were enriched for transforming growth factor-ß1 and small mother against decapentaplegic (TGF-ß1/Smad), mitogen-activated protein kinase (MAPK), and janus kinases and signal transducers and activators of transcription (Jak/Stat) signaling pathways. In particular, tgfbr1, acvr1l, rreb-1, stat5b, smad4, cbp, and c-fos were up-regulated and positively correlated with KM dose. KM had a growth-promoting effect that was related to cell proliferation driven by the TGF-ß1/Smad, MAPK, and Jak/Stat signaling pathways. KM at 0.2 mg/kg optimized the growth performance of C. carpio, while higher concentrations of KM (2 and 20 mg/kg) may induce apoptosis without significantly damaging the fish intestinal structure. Therefore, KM at low concentration has great potential for development as an aquatic growth promotion additive.
Assuntos
Carpas , Microbiota , Ração Animal/análise , Animais , Carpas/genética , Carpas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Alcaloides Indólicos , Janus Quinases , Proteínas Quinases Ativadas por Mitógeno , Receptor do Fator de Crescimento Transformador beta Tipo I , Suínos , Fator de Crescimento Transformador beta1/metabolismoRESUMO
In China, the Cranoglanis bouderius is classified as a national class II-protected animal. The development of C. bouderius populations has been affected by a variety of factors over the past few decades, with severe declines occurring. Considering the likelihood of continued population declines of the C. bouderius in the future, it is critical to investigate the currently unknown characteristics of gonadal differentiation and sex-related genes for C. bouderius conservation. In this study, the Illumina sequencing platform was used to sequence the gonadal transcriptome of the C. bouderius to identify the pathways and genes related to gonadal development and analyze the expression differences in the gonads. A total of 12,002 DEGs were identified, with 7220 being significantly expressed in the ovary and 4782 being significantly expressed in the testis. According to the functional enrichment results, the cell cycle, RNA transport, apoptosis, Wnt signaling pathway, p53 signaling pathway, and prolactin signaling pathway play important roles in sex development in the C. bouderius. Furthermore, the sequence characterization and evolutionary analysis revealed that AMH, DAX1, NANOS1, and AR of the C. bouderius are highly conserved. Specifically, the qRT-PCR results from various tissues showed significant differences in AMH, DAX1, NANOS1, and AR expression levels in the gonads of both sexes of C. bouderius. These analyses indicated that AMH, DAX1, NANOS1, and AR may play important roles in the differentiation and development of C. bouderius gonads. To our best knowledge, this study is the first to analyze the C. bouderius gonadal transcriptome and identify the structures of sex-related genes, laying the foundation for future research.
Assuntos
Peixes-Gato , Gônadas , Masculino , Animais , Feminino , Gônadas/metabolismo , Perfilação da Expressão Gênica , Testículo/metabolismo , Ovário/metabolismo , Peixes-Gato/genética , Transcriptoma , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Children with idiopathic nephrotic syndrome (INS) usually have podocyte injury, and recent studies suggest a B cell dysfunction in INS. Therefore, this study attempts to screen and identify the podocyte autoantibodies in patients. Two-dimensional electrophoresis and mass spectrometry were used to screen and identify the pathogenic podocyte autoantibodies in children with INS. The positive rate, expression pattern, and clinical correlation of these podocyte autoantibodies in children with INS were determined by clinical study. At least 66% of INS children have podocyte autoantibodies. Seven podocyte autoantibodies closely related to INS were screened and identified for the first time in this study. These podocyte autoantibodies are positively correlated with proteinuria, and its titer will decrease rapidly after effective treatment. In this study, a group of new disease subgroup-"autoimmune podocytes" were identified by podocyte autoantibodies.
Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Síndrome Nefrótica/imunologia , Podócitos/imunologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteinúria/imunologiaRESUMO
We report a palladium-catalyzed, ligand promoted, C-H fluorine-containing olefination of anilides with 4-bromo-3,3,4,4-tetrafluorobutene as the fluorinated reagent, which has a potential transformation into other compounds due to its -CF2CF2Br functional group. -CF2CF2H was obtained by using the mild reducing agent sodium borohydride. Bioactive compounds such as aminoglutethimide derivative and propham were well-tolerated in this reaction, both of which highlight the synthetic importance of this method.
RESUMO
Soil heavy metal contamination is an increasingly urgent problem throughout the world. Phytoremediation is a cost-effective and ecologically friendly in situ method for the remediation of heavy metal contaminated soils. Rice has the potential for use in soil remediation due to its high biomass production, however, risks related to food safety and low accumulation potential exist. Therefore, in the current study, rice stubble was used as the adsorbent in a modified rice-fish system (MRFS) to assess its accumulation capacity in a model paddy field dosed with 0-40.0 mg kg-1 Cd. The weighted mean concentration (WMC) of Cd in rice stubble increased from 0.498 to 36.365 mg kg-1 to 1.038-71.180 mg kg-1 from 0 to 60 days post-harvest (dph), and the corresponding increment rate was 107.68%, 117.42%, 157.77% and 95.73%, respectively. Sixty-days post-harvest, removal rate of Cd from contaminated soils was 1.11-1.40%, which was greater than that of the Cd-hyperaccumulator Thlaspi caerulescens. The WMC of the heavy metals Cd, Zn, Pb, Cr and Cu in rice stubble increased 51.11-97.50%, and removal rate was 1.93-2.66%. Overall, rice stubble had a high capacity of heavy metal accumulation, mainly benefiting from the synthesis effects of MRFS and the changes of accumulation mechanism within the plant from being alive until death. Notably, this study also provides a new idea for in situ, herbage-based phytoremediation of heavy metal-contaminated soils.
Assuntos
Agricultura , Biodegradação Ambiental , Cádmio/toxicidade , Oryza/fisiologia , Poluentes do Solo/toxicidade , Adsorção , Biomassa , Brassicaceae , Cádmio/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análiseRESUMO
Direct functionalization of a C-H bond at either the meta or para position by only changing the catalyst system poses a significant challenge. We herein report the [Fe(TPP)Cl]-enabled, selective, C-H difluoromethylation of arenes using BrCF2CO2Et as the difluoromethylation source, which successfully altered the selectivity from the meta to the para position. A preliminary mechanistic study revealed the iron porphyrin complex not only activated the aromatic ring but also induced para selectivity due to the influence of ligand sterics.