Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(2): e14172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37793069

RESUMO

Cranial stereotactic irradiations require accurate reproduction of the planning CT patient position at the time of treatment, including removal of rotational offsets. A device prototype was evaluated for potential clinical use to correct rotational positional offsets in image-guided radiotherapy workflow. Analysis was carried out with a prototype device "RPS head" by gKteso GmbH, rotatable up to 4° in three dimensions by hand wheels. A software tool accounts for the nonrectangular rotation axes and also indicates translational motions to be performed with the standard couch to correct the initial offset and translational shifts introduced by the rotational motion. The accuracy of angular corrections and positioning of an Alderson RANDO head phantom using the prototype device was evaluated for nine treatment plans for cranial targets. Corrections were obtained from cone beam computed tomography (CBCT) imaging. The phantom position was adjusted and the final position was then verified by another CBCT. The long-term stability of the prototype device was evaluated. Attenuation by the device along its three main axes was assessed. A planning study was performed to evaluate if regions of high-density material can be avoided during plan generation. The device enabled the accurate correction of rotational offsets in a clinical setup with a mean residual angular difference of (0.0 ± 0.1)° and a maximum deviation of 0.2°. Translational offsets were less than 1 mm. The device was stable over a period of 20 min, not changing the head support plate position by more than (0.7 ± 0.6) mm. The device contains high-density material in the adjustment mechanism and slightly higher density in the support structures. These can be avoided during planning generation maintaining comparable plan quality. The head positioning device can be used to correct rotational offsets in a clinical setting.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Posicionamento do Paciente , Radioterapia Guiada por Imagem/métodos , Rotação , Imagens de Fantasmas , Software , Tomografia Computadorizada de Feixe Cônico/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos
2.
J Appl Clin Med Phys ; 25(7): e14311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386919

RESUMO

MOTIVATION: Online adaptive radiotherapy with Ethos is based on the anatomy determined from daily cone beam computed tomography (CBCT) images. Dose optimization and computation are performed on the density map of a synthetic CT (sCT), a deformable registration of the initial planning CT (pCT) onto the current CBCT. Large density changes as present in the lung region are challenging the system. METHODS: Treatment plans for Ethos were created and delivered for 1, 2, and 3 cm diameter lung lesions in an anthropomorphic phantom, combining different insets in the pCT and during adaptive and non-adaptive treatment sessions. Primary and secondary dose calculations as well as back-projected dose from portal images were evaluated. RESULTS: Density changes due to changed insets were not considered in the sCTs. This resulted in errors in the dose; for example, -15.9% of the mean dose for a plan when changing from a 3 cm inset in the pCT to 1 cm at the time of treatment. Secondary dose calculation is based on the sCT and could therefore not reveal these dose errors. However, dose calculation on the CBCT, either as a recalculation in the treatment planning system or as pre-treatment quality assurance (QA) before the treatment, indicated the differences. EPID in-vivo QA also reported discrepancies between calculated and delivered dose distributions. CONCLUSIONS: An incorrect density distribution in the sCT has an impact on the dose calculation accuracy in the adaptive treatment workflow with the Ethos system. Additional quality checks of the sCT can detect such errors.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Neoplasias Pulmonares , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Órgãos em Risco/efeitos da radiação , Algoritmos
3.
J Appl Clin Med Phys ; 24(12): e14139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690124

RESUMO

PURPOSE: Secondary dose calculation (SDC) with an independent algorithm is one option to perform plan-specific quality assurance (QA). While measurement-based QA can potentially detect errors in plan delivery, the dose values are typically only compared to calculations on homogeneous phantom geometries instead of patient CT data. We analyzed the sensitivity and specificity of an SDC software by purposely introducing different errors and determined thresholds for optimal decisions. METHODS: Thirty head and neck VMAT plans and 30 modifications of those plans, including errors related to density and beam modelling, were recalculated using RadCalc with a Monte Carlo algorithm. Decision thresholds were obtained by receiver operating characteristics (ROC) analysis. For comparison, measurement-based QA using the ArcCHECK phantom was carried out and evaluated in the same way. RESULTS: Despite optimized decision thresholds, none of the systems was able to reliably detect all errors. ArcCHECK analysis using a 2%/2 mm criterion with a threshold of 91.1% had an area under the curve (AUC) of 0.80. Evaluating differences in recalculated and planned DVH parameter of the target structures in RadCalc with a 2% threshold an AUC of 0.86 was achieved. Out-of-field deviations could be attributed to weaknesses in the beam model. CONCLUSIONS: Secondary dose calculation with RadCalc is an alternative to established measurement-based phantom QA. Different tools catch different errors; therefore, a combination of approaches should be preferred.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador , Garantia da Qualidade dos Cuidados de Saúde , Software , Sensibilidade e Especificidade , Dosagem Radioterapêutica
4.
J Appl Clin Med Phys ; 24(8): e14001, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086428

RESUMO

PURPOSE: Developed as a plan-specific pre-treatment QA tool, Varian portal dosimetry promises a fast, high-resolution, and integrated QA solution. In this study, the agreement between predicted fluence and measured cumulative portal dose was determined for the first 140 patient plans at our Halcyon linear accelerator. Furthermore, the capability of portal dosimetry to detect incorrect plan delivery was compared to that of a common QA phantom. Finally, tolerance criteria for verification of VMAT plan delivery with Varian portal dosimetry were derived. METHODS: All patient plans and the corresponding verification plans were generated within the Eclipse treatment planning system. Four representative plans of different treatment sites (prostate, prostate with lymphatic drainage, rectum, and head & neck) were intentionally altered to model incorrect plan delivery. Investigated errors included both systematic and random errors. Gamma analysis was conducted on both portal dose (criteria γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm ) and ArcCHECK measurements (criteria γ3%/3 mm , γ3%/2 mm , and γ2%/2 mm ) with a 10% low-dose threshold. Performance assessment of various acceptance criteria for plan-specific treatment QA utilized receiver operating characteristic (ROC) analysis. RESULTS: Predicted and acquired portal dosimetry fluences demonstrated a high agreement evident by average gamma passing rates for the clinical patient plans of 99.90%, 96.64%, and 91.87% for γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm , respectively. The ROC analysis demonstrated a very high capability of detecting erroneous plan delivery for portal dosimetry (area under curve (AUC) > 0.98) and in this regard outperforms QA with the ArcCHECK phantom (AUC ≈ 0.82). With the suggested optimum decision thresholds excellent sensitivity and specificity is simultaneously possible. CONCLUSIONS: Owing to the high achievable spatial resolution, portal dosimetry at the Halcyon can reliably be deployed as plan-specific pre-treatment QA tool to screen for errors. It is recommended to support the fluence integrated portal dosimetry QA by independent phantom-based measurements of a random sample survey of treatment plans.


Assuntos
Radioterapia de Intensidade Modulada , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador , Radiometria , Dosagem Radioterapêutica , Sensibilidade e Especificidade , Garantia da Qualidade dos Cuidados de Saúde
5.
J Appl Clin Med Phys ; 23(5): e13577, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35234345

RESUMO

PURPOSE: Any Linac will show geometric imprecisions, including non-ideal alignment of the gantry, collimator and couch axes, and gantry sag or wobble. Their angular dependence can be quantified and resulting changes of the dose distribution predicted (Wack, JACMP 20(5), 2020). We analyzed whether it is feasible to correct geometric shifts during treatment planning. The successful implementation of such a correction procedure was verified by measurements of different stereotactic treatment plans. METHODS: Isocentric shifts were quantified for two Elekta Synergy Agility Linacs using the QualiForMed ISO-CBCT+ module, yielding the shift between kV and MV isocenters, the gantry flex and wobble as well as the positions of couch and collimator rotation axes. Next, the position of each field's isocenter in the Pinnacle treatment planning system was adjusted accordingly using a script. Fifteen stereotactic treatment plans of cerebral metastases (0.34 to 26.53 cm3 ) comprising 9-11 beams were investigated; 54 gantry and couch combinations in total. Unmodified plans and corrected plans were measured using the Sun Nuclear SRS-MapCHECK with the Stereophan phantom and evaluated using gamma analysis. RESULTS: Geometric imprecisions, such as shifts of up to 0.8 mm between kV and MV isocenter, a couch rotation axis 0.9 mm off the kV isocente,r and gantry flex with an amplitude of 1.1 mm, were found. For eight, mostly small PTVs D98 values declined more than 5% by simulating these shifts. The average gamma (2%/2 mm, absolute, global, 20% threshold) was reduced from 0.53 to 0.31 (0.32 to 0.30) for Linac 1 (Linac 2) when including the isocentric corrections. Thus, Linac 1 reached the accuracy level of Linac 2 after correction. CONCLUSION: Correcting for Linac geometric deviations during the planning process is feasible and was dosimetrically validated. The dosimetric impact of the geometric imperfections can vary between Linacs and should be assessed and corrected where necessary.


Assuntos
Aceleradores de Partículas , Radiocirurgia , Humanos , Imagens de Fantasmas , Radiometria , Radiocirurgia/métodos , Rotação
6.
J Appl Clin Med Phys ; 22(10): 144-151, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34519437

RESUMO

PURPOSE: A signal dependence on dose rate was reported for the ArcCHECK array due to recombination processes within the diodes. The purpose of our work was to quantify the necessary correction and apply them to quality assurance measurements. METHODS: Static 10 × 10 cm2 6-MV fields delivered by a linear accelerator were applied to the detector array while decreasing the average dose rate, that is, the pulse frequency, from 500 to 30 MU/min. An ion chamber was placed inside the ArcCHECK cavity as a reference. Furthermore, the instantaneous dose rate dependence (DRD) was studied. The position of the detector was adjusted to change the dose-per-pulse, varying the distance between the focus and the diode closest to the focus between 69.6 and 359.6 cm. Reference measurements were performed with an ion chamber placed inside a PMMA slab phantom at the same source-to-detector distances ( S D D s ) . Exponential saturation functions were fitted to the data, with different parameters to account for two generations of ArcCHECK detectors (types 2 and 3) and both DRDs. Corrections were applied to 12 volumetric modulated arc therapy plans. RESULTS: The sensitivity decreased by up to 2.8% with a decrease in average dose rate and by 9% with a decrease in instantaneous dose rate. Correcting the average DRD, the mean gamma pass rates (2%/2-mm criterion) of the treatment plans were improved by 5 percentage points (PP) for diode type 3 and 0.4 PP for type 2. Correcting the instantaneous DRD, the improvement was 8.4 PP for type 3 and 0.9 PP for type 2. CONCLUSIONS: The instantaneous DRD was identified as the prevailing effect on the diode sensitivity. We developed and validated a method to correct this behavior. The number of falsely not passed treatment plans could be considerably reduced.


Assuntos
Radioterapia de Intensidade Modulada , Silício , Humanos , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
J Appl Clin Med Phys ; 21(5): 56-64, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196950

RESUMO

PURPOSE: To assess the impact of isocenter shifts due to linac gantry and table rotation during cranial stereotactic radiosurgery on D98 , target volume coverage (TVC), conformity (CI), and gradient index (GI). METHODS: Winston-Lutz (WL) checks were performed on two Elekta Synergy linacs. A stereotactic quality assurance (QA) plan was applied to the ArcCHECK phantom to assess the impact of isocenter shift corrections on Gamma pass rates. These corrections included gantry sag, distance of collimator and couch axes to the gantry axis, and distance between cone-beam computed tomography (CBCT) isocenter and treatment beam (MV) isocenter. We applied the shifts via script to the treatment plan in Pinnacle 16.2. In a planning study, isocenter and mechanical rotation axis shifts of 0.25 to 2 mm were applied to stereotactic plans of spherical planning target volumes (PTVs) of various volumes. The shifts determined via WL measurements were applied to 16 patient plans with PTV sizes between 0.22 and 10.4 cm3 . RESULTS: ArcCHECK measurements of a stereotactic treatment showed significant increases in Gamma pass rate for all three measurements (up to 3.8 percentage points) after correction of measured isocenter deviations. For spherical targets of 1 cm3 , CI was most severely affected by increasing the distance of the CBCT isocenter (1.22 to 1.62). Gradient index increased with an isocenter-collimator axis distance of 1.5 mm (3.84 vs 4.62). D98 (normalized to reference) dropped to 0.85 (CBCT), 0.92 (table axis), 0.95 (collimator axis), and 0.98 (gantry sag), with similar but smaller changes for larger targets. Applying measured shifts to patient plans lead to relevant drops in D98 and TVC (7%) for targets below 2 cm3 treated on linac 1. CONCLUSION: Mechanical deviations during gantry, collimator, and table rotation may adversely affect the treatment of small stereotactic lesions. Adjustments of beam isocenters in the treatment planning system (TPS) can be used to both quantify their impact and for prospective correction of treatment plans.


Assuntos
Aceleradores de Partículas , Radiocirurgia , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador
8.
J Appl Clin Med Phys ; 20(1): 89-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412346

RESUMO

PURPOSE: To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source-to-axis distance (SAD) for simple spherical target and different prescription isodoses (PI). METHOD: A TPS-independent method was used to estimate three-dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two-dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi-Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross-sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. RESULTS: For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%-12%; gradient indices (GI) were reduced by 3-39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%-33% lower for reduced SAD in the PI range 40%-70%. For PI = 80% and 90% the results depend on the circular collimator model. CONCLUSION: Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.


Assuntos
Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
9.
J Appl Clin Med Phys ; 19(6): 274-281, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30298980

RESUMO

Relative dose measurements with small ionization chambers in combination with an electrometer placed in the treatment room ("internal electrometer") show a large dependence on the polarity used. While this was observed previously for percent depth dose curves (PDDs), the effect has not been understood or preventable. To investigate the polarity dependence of internal electrometers used in conjunction with a small-volume ionization chamber, we placed an internal electrometer at a distance of 1 m from the isocenter and exposed it to different amounts of scattered radiation by varying the field size. We identified irradiation of the electrometer to cause a current of approximately -1 pA, regardless of the sign of the biasing voltage. For low-sensitivity detectors, such a current noticeably distorts relative dose measurements. To demonstrate how the current systematically changes PDDs, we collected measurements with nine ionization chambers of different volumes. As the chamber volume decreased, signal ratios at 20 and 10 cm depth (M20/M10) became smaller for positive bias voltage and larger for negative bias voltage. At the size of the iba CC04 (40 mm³) the difference of M20/M10 was around 1% and for the smallest studied chamber, the iba CC003 chamber (3 mm³), around 7% for a 10 × 10 cm² field. When the electrometer was moved further from the source or shielded, the additional current decreased. Consequently, PDDs at both polarities were brought into alignment at depth even for the 3 mm³ ionization chamber. The apparent polarity effect on PDDs and lateral beam profiles was reduced considerably by shielding the electrometer. Due to normalization the effect on output values was low. When measurements with a low-sensitivity probe are carried out in conjunction with an internal electrometer, we recommend careful monitoring of the particular setup by testing both polarities, and if deemed necessary, we suggest shielding the electrometer.


Assuntos
Eletrônica/instrumentação , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Espalhamento de Radiação , Calibragem , Eletrônica/métodos , Humanos , Doses de Radiação
10.
Phys Med Biol ; 69(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38091616

RESUMO

Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).


Assuntos
Aceleradores de Partículas , Radiometria , Radiometria/métodos , Fótons
11.
Z Med Phys ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852003

RESUMO

Cone-beam computed tomography (CBCT)-based online adaptation is increasingly being introduced into many clinics. Upon implementation of a new treatment technique, a prospective risk analysis is required and enhances workflow safety. We conducted a risk analysis using Failure Mode and Effects Analysis (FMEA) upon the introduction of an online adaptive treatment programme (Wegener et al., Z Med Phys. 2022). A prospective risk analysis, lacking in-depth clinical experience with a treatment modality or treatment machine, relies on imagination and estimates of the occurrence of different failure modes. Therefore, we systematically documented all irregularities during the first year of online adaptation, namely all cases in which quality assurance detected undesired states potentially leading to negative consequences. Additionally, the quality of automatic contouring was evaluated. Based on those quantitative data, the risk analysis was updated by an interprofessional team. Furthermore, a hypothetical radiation therapist-only workflow during adaptive sessions was included in the prospective analysis, as opposed to the involvement of an interprofessional team performing each adaptive treatment. A total of 126 irregularities were recorded during the first year. During that time period, many of the previously anticipated failure modes (almost) occurred, indicating that the initial prospective risk analysis captured relevant failure modes. However, some scenarios were not anticipated, emphasizing the limits of a prospective risk analysis. This underscores the need for regular updates to the risk analysis. The most critical failure modes are presented together with possible mitigation strategies. It was further noted that almost half of the reported irregularities applied to the non-adaptive treatments on this treatment machine, primarily due to a manual plan import step implemented in the institution's workflow.

12.
Med Phys ; 50(12): 8044-8056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37646469

RESUMO

BACKGROUND: Beam data commissioning is a core task of radiotherapy physicists. Despite multiple detectors available, a feasible measurement program compromises between detector properties and time constraints. Therefore, it is important to understand how nonideal measurement data propagates into patient dose calculation. PURPOSE: We simulated the effects of realistic errors, due to beam commissioning with presumably nonoptimal detectors, on the resulting patient dose distributions. Additionally, the detectability of such beam commissioning errors during patient plan quality assurance (QA) was evaluated. METHODS: A clinically used beam model was re-commissioned introducing changes to depth dose curves, output factors, profiles or combinations of those. Seventeen altered beam models with incremental changes of the modelling parameters were created to analyze dose changes on simplified anatomical phantoms. Additionally, fourteen altered models incorporate changes in the order of signal differences reported for typically used detectors. Eighteen treatment plans of different types were recalculated on patient CT data sets using the altered beam models. RESULTS: For the majority of clinical plans, dose distributions in the target volume recalculated on the patient computed tomography data were similar between the original and the modified beam models, yielding global 2%/2 mm gamma pass rates above 98.9%. Larger changes were observed for certain combinations of beam modelling errors and anatomical sites, most extreme for output factor changes in a small target volume plan with a pass rate of 80.6%. Modelling an enlarged penumbra as if measured with a 0.125 cm3 ion chamber had the largest effect on the dose distribution (average pass rate of 96.5%, lowest 85.4%). On different QA phantom geometries, dose distributions between calculations with modified and unmodified models typically changed too little to be detected in actual measurements. CONCLUSION: While the simulated errors during beam modelling had little effect on most plans, in some cases changes were considerable. High-quality penumbra and small field output factor should be a main focus of commissioning measurements. Detecting modelling issues using standard patient QA phantoms is unlikely. Verification of a beam model should be performed especially for plans with high modulation and in different depths or geometries representing the variety of situations expected clinically.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Imagens de Fantasmas
13.
Med Phys ; 50(11): 7177-7191, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37531177

RESUMO

BACKGROUND: The response of various detectors in the radiotherapy energy range has been investigated, especially for 6 and 10 MV energies for small fields, and is summarized in TRS-483. However, data for accelerator energies above 10 MV are sparse or unavailable for many detectors, especially for the energy of 18 MV. Small variations in field output factors for the commissioning of a treatment planning system can have a high impact on calculation of dose distributions. PURPOSE: Many studies describe an energy dependence of the response for a large number of detectors. We wanted to close the gap for the 18 MV energy regime and determined field output correction factors for different detectors at 18 MV. METHODS: An ELEKTA Versa HD accelerator at 18 MV was used together with a PTW MP3 water phantom at an SSD of 90 cm. The following detectors were examined: PTW Semiflex 31021, PinPoint 3D 31022, diode 60012, diode 60008 and microDiamond 60019, Sun Nuclear EDGE detector, IBA PFD, SFD, Razor Chamber, Razor Nano Chamber and Razor Diode, Standard Imaging Scintillator Exradin W2 1x3, W2 1x1 and Gafchromic EBT3 film. The dose response was determined at a depth of 10 cm for square fields between 0.5 and 10 cm side length. As reference data a composure of radiochromic film data for small fields ( s ≤ 3 $s\le 3$  cm) and data of all compatible chambers for larger fields ( s ≥ 3 $s\ge 3$  cm) was used. The effective field sizes of small fields were determined from profiles obtained on radiochromic film. The obtained field output correction factors obey the rules of the TRS-483 protocol. RESULTS: The W2 1x1 scintillator and the Razor Chamber showed the smallest deviations from the reference curve. The shielded diodes (diode 60008, EDGE detector) showed the highest over-response at small fields, followed by PFD, microDiamond and the unshielded diodes (diode 60012, SFD). The ionization chambers exhibited the well-known volume effect, that is, strong under-response at small fields of up to 9% for the PinPoint 3D, 7% for the Razor Chamber and up to 30% for the Semiflex detector for the smallest studied field size. The small chambers showed a polarity effect in axial orientation, especially the Razor Nano Chamber. Corrections at 18 MV are generally larger than those provided by TRS-483, continuing the trend of increasing corrections between 6 and 10 MV also at a higher accelerator energy. Only the PinPoint 3D Chamber showed a slightly smaller correction. CONCLUSIONS: Field output correction factors were determined for square field sizes between 0.5 and 10 cm at 18 MV. Most detectors needed a larger correction than at 6 and 10 MV. Thus, the use of correction factors will improve beam data for 18 MV.


Assuntos
Radiometria , Água , Radiometria/métodos , Imagens de Fantasmas , Carmustina , Fótons/uso terapêutico , Método de Monte Carlo
14.
Med Phys ; 50(2): 1242-1250, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36289176

RESUMO

PURPOSE: We developed a method based on a physical pencil beam model for accurate equivalent square calculations for rectangular and irregular fields, for different definitions of equivalent squares, for beams with and without flattening filter, different photon energies, and depths in water. METHODS: We considered two equivalent square definitions: equal dose at a point on the beam axis and equal depth dose, measured as tissue phantom ratio at 20 and 10 cm depth ( TPR 20 , 10 $\text{TPR}_{20,10}$ ). As dose engine, we used an analytical pencil beam model. By integrating the pencil beam kernels, we assigned square fields to rectangular fields minimizing the dose, respectively, the TPR 20 , 10 $\text{TPR}_{20,10}$ difference. The results were compared with measurements at 100 mm depth for nominal beam energies of 6 and 18 MV, the Sterling equation, the geometric mean, and data from BJR Suppl 25 (British Institute of Radiology, 1996). RESULTS: Pencil beam results were closest to the measurements. An energy dependence of several millimeters for small field dimensions and depth dependencies for very elongated fields were observed. For the assignment of WFF square to FFF rectangular fields, using the equal- TPR 20 , 10 $\text{TPR}_{20,10}$ definition, our method agrees with previously published results. For circular fields approximated by leaves, we found deviations to the data from BJR Suppl. 25 below 1 mm for diameters smaller than 200 mm. CONCLUSIONS: Our study shows that the validity range for geometric mean and Sterling equation is limited. Ergo, instead of specifying specific validity ranges, we suggest using the pencil beam method, valid for all aspect ratios, including elongated fields in the primary dose dominated regime. We published our method as python library and graphical user interface on GitHub. Users can choose between two definitions of equivalent square and between WFF and FFF fields. The implemented pencil beam method for irregular fields is also usable for quality assurance such as monitor unit checks.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Água , Radiometria/métodos , Aceleradores de Partículas
15.
Phys Med ; 113: 102662, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572393

RESUMO

PURPOSE: Ethos allows online adaption of radiotherapy treatment plans. Dose is calculated on synthetic computed tomographies (sCT), CT-like images generated by deforming planning CTs (pCT) onto daily cone beam CTs (CBCT) acquired during treatment sessions. Errors in sCT density distribution may lead to dose calculation errors. sCT correctness was investigated for bolus-covered surfaces. METHODS: pCTs were recorded of a slab phantom covered with bolus of different thicknesses and with air gaps introduced by spacer rings of variable diameters and heights. Treatment plans were irradiated following the adaptive workflow with different bolus configurations present in the pCT and CBCT. sCT densities were compared to those of the pCT for the same air gap size. Additionally, the neck region of an anthropomorphic phantom was imaged using a plane standard bolus versus an individual bolus adapted to the phantom's outer contour. RESULTS: Varying bolus thickness by 5 mm between pCT and CBCT was reproduced in the sCT within 2 mm accuracy. Different air gaps in pCT and CBCT resulted in highly variable bolus thickness in the sCT with a typical error of 5 mm or more. In extreme cases, air gaps were filled with bolus material density in the sCT or the phantom was unrealistically deformed near changed bolus geometries. Changes in bolus thickness and deformation also occurred in the anthropomorphic phantom. CONCLUSION: sCTs must be critically examined and included in plan-specific quality assurance. The use of tight-fitting air gap-free bolus should be preferred to increase the similarity between sCT and CBCT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Radioterapia de Intensidade Modulada/métodos , Processamento de Imagem Assistida por Computador/métodos
16.
Phys Rev Lett ; 109(10): 100603, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005274

RESUMO

We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

17.
Front Oncol ; 12: 881439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033533

RESUMO

Background: Boluses are routinely used in radiotherapy to modify surface doses. Nevertheless, considerable dose discrepancies may occur in some cases due to fit inaccuracy of commercially available standard flat boluses. Moreover, due to the simple geometric design of conventional boluses, also surrounding healthy skin areas may be unintentionally covered, resulting in the unwanted dose buildup. With the fused deposition modeling (FDM) technique, there is a simple and possibly cost-effective way to solve these problems in routine clinical practice. This paper presents a procedure of self-manufacturing bespoke patient-specific silicone boluses and the evaluation of buildup and fit accuracy in comparison to standard rectangular commercially available silicone boluses. Methods: 3D-conformal silicone boluses were custom-built to cover the surgical scar region of 25 patients who received adjuvant radiotherapy of head and neck cancer at the University Hospital Würzburg. During a standard CT-based planning procedure, a 5-mm-thick 3D bolus contour was generated to cover the radiopaque marked surgical scar with an additional safety margin. From these digital contours, molds were 3D printed and poured with silicone. Dose measurements for both types of boluses were performed with radiochromic films (EBT3) at three points per patient-at least one aimed to be in the high-dose area (scar) and one in the lower-dose area (spared healthy skin). Surface-bolus distance, which ideally should not be present, was determined from cone-beam CT performed for positioning control. The dosimetric influence of surface-bolus distance was also determined on slab phantom for different field sizes. The trial was performed with hardware that may be routinely available in every radiotherapy department, with the exception of the 3D printer. The required number of patients was determined based on the results of preparatory measurements with the help of the statistical consultancy of the University of Würzburg. The number of measuring points represents the total number of patients. Results: In the high-dose area of the scar, there was a significantly better intended dose buildup of 2.45% (95%CI 0.0014-0.0477, p = 0.038, N = 30) in favor of a 3D-conformal bolus. Median distances between the body surface and bolus differed significantly between 3D-conformal and commercially available boluses (3.5 vs. 7.9 mm, p = 0.001). The surface dose at the slab phantom did not differ between commercially available and 3D-conformal boluses. Increasing the surface-bolus distance from 5 to 10 mm decreased the surface dose by approximately 2% and 11% in the 6 × 6- and 3 × 3-cm2 fields, respectively. In comparison to the commercially available bolus, an unintended dose buildup in the healthy skin areas was reduced by 25.9% (95%CI 19.5-32.3, p < 0.01, N = 37) using the 3D-conformal bolus limited to the region surrounding the surgical scar. Conclusions: Using 3D-conformal boluses allows a comparison to the commercially available boluses' dose buildup in the covered areas. Smaller field size is prone to a larger surface-bolus distance effect. Higher conformity of 3D-conformal boluses reduces this effect. This may be especially relevant for volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques with a huge number of smaller fields. High conformity of 3D-conformal boluses reduces an unintended dose buildup in healthy skin. The limiting factor in the conformity of 3D-conformal boluses in our setting was the immobilization mask, which was produced primarily for the 3D boluses. The mask itself limited tight contact of subsequently produced 3D-conformal boluses to the mask-covered body areas. In this respect, bolus adjustment before mask fabrication will be done in the future setting.

18.
Z Med Phys ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36504142

RESUMO

PURPOSE: The recently introduced Varian Ethos system allows adjusting radiotherapy treatment plans to anatomical changes on a daily basis. The system uses artificial intelligence to speed up the process of creating adapted plans, comes with its own software solutions and requires a substantially different workflow. A detailed analysis of possible risks of the associated workflow is presented. METHODS: A prospective risk analysis of the adaptive workflow with the Ethos system was performed using Failure Modes and Effects Analysis (FMEA). An interprofessional team collected possible adverse events and evaluated their severity as well as their chance of occurrence and detectability. Measures to reduce the risks were discussed. RESULTS: A total of 122 events were identified, and scored. Within the 20 events with the highest-ranked risks, the following were identified: Challenges due to the stand-alone software solution with very limited connectivity to the existing record and verify software and digital patient file, unfamiliarity with the new software and its limitations and the adaption process relying on results obtained by artificial intelligence. The risk analysis led to the implementation of additional quality assurance measures in the workflow. CONCLUSIONS: The thorough analysis of the risks associated with the new treatment technique was the basis for designing details of the workflow. The analysis also revealed challenges to be addressed by both, the vendor and customers. On the vendor side, this includes improving communication between their different software solutions. On the customer side, this especially includes establishing validation strategies to monitor the results of the black box adaption process making use of artificial intelligence.

19.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230878

RESUMO

BACKGROUND: The purpose of this study was to access the oncological outcome of prostate-specific membrane antigen positron emission tomography (PSMA PET/CT)-guided salvage radiotherapy (SRT) for localized macroscopic prostate cancer recurrence. METHODS: Between February 2010 and June 2021, 367 patients received SRT after radical prostatectomy. Out of the 367 screened patients, 111 patients were staged by PSMA PET/CT before SRT. A total of 59 out of these 111 (53.2%) patients were treated for PSMA PET-positive macroscopic prostatic fossa recurrence. Dose-escalated SRT was applied with a simultaneous integrated boost at a median prescribed dose of 69.3 Gy (IQR 69.3-72.6 Gy). The oncological outcome was investigated using Kaplan-Meier and Cox regression analyses. The genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (version 5.0). RESULTS: The median follow-up was 38.2 months. The three-year biochemical progression-free survival rate was 89.1% (95% CI: 81.1-97.8%) and the three-year metastasis-free survival rate reached 96.2% (95% CI: 91.2-100.0%). The cumulative three-year late grade 3 GU toxicity rate was 3.4%. No late grade 3 GI toxicity occurred. CONCLUSIONS: Dose-escalated PSMA PET/CT-guided salvage radiotherapy for macroscopic prostatic fossa recurrence resulted in favorable survival and toxicity rates.

20.
Radiat Oncol ; 16(1): 213, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742291

RESUMO

BACKGROUND: To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. METHODS: For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. RESULTS: The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. CONCLUSIONS: For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA