Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 193(5): 567-578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080661

RESUMO

Protein kinase CK2 is a constitutively active and ubiquitously expressed serine/threonine kinase that is closely associated with various types of cancers, autoimmune disorders, and inflammation. However, the role of CK2 in psoriasis remains unknown. Herein, the study indicated elevated expression of CK2 in skin lesions from patients with psoriasis and from psoriasis-like mice. In the psoriasis-like mouse model, the CK2-specific inhibitor CX-4945 ameliorated imiquimod-induced psoriasis symptoms with reduced proliferation, abnormal differentiation, inflammatory cytokine production (especially IL-17A) of keratinocytes, and infiltration of γδ T cells. In in vitro studies, exogenous CK2 promoted hyperproliferation and abnormal differentiation of human keratinocytes, which were reversed by the suppression of CK2 with CX-4945 or siRNA. Furthermore, knockdown of CK2 reduced IL-17A expression and abolished IL-17A-induced proliferation and inflammatory cytokine expression in keratinocytes. Interestingly, IL-17A increased the expression of CK2 in keratinocytes, thereby establishing a positive feedback loop. In addition, suppression of CK2 inhibited the activation of STAT3 and Akt signaling pathways in human keratinocytes and imiquimod-induced psoriatic lesions of mice. These findings indicate that a highly expressed CK2 level in the skin lesions is required in the development of psoriasis by promoting epidermal hyperplasia, abnormal differentiation, and inflammatory response via regulation of the STAT3 and Akt signaling pathways. CK2 may be a target for the treatment of psoriasis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Psoríase , Animais , Humanos , Camundongos , Caseína Quinase II/metabolismo , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
J Transl Med ; 21(1): 898, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082290

RESUMO

BACKGROUND: Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS: BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS: We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION: Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.


Assuntos
Asma , Pneumonia , Camundongos , Animais , Streptococcus pneumoniae/metabolismo , Antígenos CD13 , Citocinas/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Inflamação/prevenção & controle , Macrófagos/metabolismo , Anti-Inflamatórios , Fenótipo , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Immunology ; 167(3): 384-397, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35794812

RESUMO

Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5-like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti-inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti-inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.


Assuntos
Asma , Macrófagos Alveolares , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Líquido da Lavagem Broncoalveolar , Antígeno CD11c/metabolismo , Modelos Animais de Doenças , Histona Desacetilase 2 , Inflamassomos/metabolismo , Inflamação , Pulmão , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina , Receptores Depuradores/metabolismo
4.
Immun Inflamm Dis ; 11(2): e779, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36840485

RESUMO

Efferocytosis can resolve airway inflammation and enhance airway tolerance in allergic asthma. While previous work has reported that progranulin (PGRN) regulated macrophage efferocytosis, but it is unclear whether PGRN-mediated efferocytosis is associated with asthma. Here, we found that in an ovalbumin (OVA)-induced allergic asthma model, the airway inflammation was suppressed and the apoptosis in lung tissues was ameliorated in PGRN-deficient mice. In contrast, PGRN knockdown in human bronchial epithelial cells increased apoptosis in vitro. Furthermore, PGRN-deficient macrophages had significantly stronger efferocytosis ability than wild type (WT) macrophages both in vitro and in vivo. PGRN-deficient peritoneal macrophages (PMs) exhibited increased expression of genes associated with efferocytosis including milk fat globule-epidermal growth factor 8 (MFG-E8), peroxisome proliferator-activated receptor gamma (PPAR-γ) and sirtuin1 (SIRT1) and increased capacity to produce the anti-inflammatory mediator interleukin (IL)-10 during efferocytosis. GW9662, the inhibitor of PPAR-γ, abolished increased efferocytosis and MFG-E8 expression in PGRN-deficient PMs suggesting that PGRN deficiency enhanced MFG-E8-mediated efferocytosis through PPAR-γ. Correspondingly, efferocytosis genes were increased in the lungs of OVA-induced PGRN-deficient mice. GW9662 treatment reduced MFG-E8 expression but did not significantly affect airway inflammation. Our results demonstrated that PGRN deficiency enhanced efferocytosis via the PPAR-γ/MFG-E8 pathway and this may be one of the reasons PGRN deficiency results in inhibition of airway inflammation in allergic asthma.


Assuntos
Asma , PPAR gama , Camundongos , Animais , Humanos , PPAR gama/metabolismo , Progranulinas , Fator VIII/metabolismo , Macrófagos/metabolismo , Asma/metabolismo , Inflamação/metabolismo
5.
iScience ; 26(8): 107464, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37588169

RESUMO

Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA