Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311155, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516961

RESUMO

Herein, a Safe-and-Sustainable-by-Design (SSbD) screening strategy on four different inorganic aerogel mats and two conventional mineral wools for ranking purposes is demonstrated. Given that they do not consist of particles, the release is first simulated, addressing three occupational exposure scenarios, realistic for their intended use as building insulators. No exposure to consumers nor to the environment is foreseen in the use phase, however, aerosols may be released during mat installation, posing an inhalation risk for workers. All four aerogel mats release more respirable dust than the benchmark materials and 60% thereof deposits in the alveolar region according to modelling tools. The collected aerogel dust allows for subsequent screening of hazard implications via two abiotic assays: 1) surface reactivity in human blood serum; 2) biodissolution kinetics in lung simulant fluids. Both aerogels and conventional insulators show similar surface reactivity. Differences in biodissolution are influenced by the specifically designed organic and inorganic structural modifications. Aerogel mats are better-performing insulators (2-fold lower thermal conductivity than the benchmark) However, this work demonstrates how investment decisions can be balanced with safety and sustainability aspects. Concepts of analogy and similarity thus support easily accessible methods to companies for safe and economically viable innovation with advanced materials.

2.
Environ Sci Technol ; 58(9): 4314-4325, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373233

RESUMO

Chemical degradation testing often involves monitoring the loss of a chemical or the evolution of a single diagnostic product through time. Here, we demonstrate a novel approach to tracing complex degradation networks using mass-spectrometry-based methods and open cheminformatics tools. Ester- and ether-based thermoplastic polyurethane (TPU_Ester and TPU_Ether) microplastics (350 µm) and microplastics-derived dissolved organic carbon (MP-DOC) were photoweathered in a simulated marine environment and subsequently analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We formula-annotated 1342 and 2344 unique features in the MP-DOC of TPU_Ester and TPU_Ether, respectively. From these, we extracted 199 and 568 plausible parent-transformation product pairs via matching of features (a) with complementary increasing and decreasing trends (Spearman's correlation coefficient between normalized intensity and time), (b) spectral similarities of at least three accurate mass MS2 fragments, and (c) at least 3 ppm agreement between the theoretical and measured change in m/z between the parent-transformation product formula. Molecular network analysis revealed that both chain scission and cross-linking reactions occur dynamically rather than degradation proceeding in a monotonic progression to smaller or more oxygenated structures. Network nodes with the highest degree of centrality were tentatively identified using in silico fragmentation and can be prioritized for toxicity screening or other physicochemical properties of interest. This work has important implications for chemical transformation tracking in complex mixtures and may someday enable improved elucidation of environmental transformation rules (i.e., structure-reactivity relationships) and fate modeling.


Assuntos
Microplásticos , Plásticos , Matéria Orgânica Dissolvida , Espectrometria de Massas/métodos , Éteres , Ésteres , Carbono
3.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760761

RESUMO

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Assuntos
Exposição por Inalação , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Masculino , Feminino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Tamanho da Partícula , Administração por Inalação , Dano ao DNA , Ratos , Ensaio Cometa , Ratos Wistar , Reprodução/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
4.
Regul Toxicol Pharmacol ; 144: 105495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730194

RESUMO

Polymers are a very large class of chemicals comprising often complex molecules with multiple functions used in everyday products. The EU Commission is seeking to develop environmental and human health standard information requirements (SIRs) for man-made polymers requiring registration (PRR) under a revised Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation. Conventional risk assessment approaches currently used for small molecules may not apply to most polymers. Therefore, we propose a conceptual three-tiered regulatory approach for data generation to assess individual and groups of polymers requiring registration (PRR). A key element is the grouping of polymers according to chemistry, physico-chemical properties and hazard similarity. The limited bioavailability of many polymers is a prominent difference to many small molecules and is a key consideration of the proposed approach. Methods assessing potential for systemic bioavailability are integral to Tier 1. Decisions for further studies are based on considerations of properties and effects, combined with systemic bioavailability and use and exposure considerations. For many PRRs, Tier 1 data on hazard, use and exposure will likely be sufficient for achieving the protection goals of REACH. Vertebrate animal studies in Tiers 2 and 3 can be limited to targeted testing. The outlined approach aims to make use of current best scientific evidence and to reduce animal testing whilst providing data for an adequate level of protection.

5.
Angew Chem Int Ed Engl ; 62(22): e202210651, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36254879

RESUMO

In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.

6.
Small ; 18(17): e2200231, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324067

RESUMO

The European Green Deal outlines ambitions to build a more sustainable, climate neutral, and circular economy by 2050. To achieve this, the European Commission has published the Chemicals Strategy for Sustainability: Towards a Toxic-Free Environment, which provides targets for innovation to better protect human and environmental health, including challenges posed by hazardous chemicals and animal testing. The European project PATROLS (Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment) has addressed multiple aspects of the Chemicals Strategy for Sustainability by establishing a battery of new approach methodologies, including physiologically anchored human and environmental hazard assessment tools to evaluate the safety of engineered nanomaterials. PATROLS has delivered and improved innovative tools to support regulatory decision-making processes. These tools also support the need for reducing regulated vertebrate animal testing; when used at an early stage of the innovation pipeline, the PATROLS tools facilitate the safe and sustainable development of new nano-enabled products before they reach the market.


Assuntos
Nanoestruturas , Animais , Saúde Ambiental , União Europeia , Medição de Risco
7.
Chem Res Toxicol ; 35(6): 963-980, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593714

RESUMO

Dissolution of inhaled engineered nanomaterials (ENM) under physiological conditions is essential to predict the clearance of the ENM from the lungs and to assess their biodurability and the potential effects of released ions. Alveolar macrophage (AM) lysosomes contain a pH 4.5 saline brine with enzymes and other components. Different types of artificial phagolysosomal simulant fluids (PSFs) have been developed for dissolution testing, but the consequence of using different media is not known. In this study, we tested to which extent six fundamentally different PSFs affected the ENM dissolution kinetics and particle size as determined by a validated transmission electron microscopy (TEM) image analysis. Three lysosomal simulant media were consistent with each other and with in vivo clearance. These media predict the quick dissolution of ZnO, the partial dissolution of SiO2, and the very slow dissolution of TiO2. The valid media use either a mix of organic acids (with the total concentration below 0.5 g/L, thereof citric acid below 0.15 g/L) or another organic acid (KH phthalate). For several ENM, including ZnO, BaSO4, and CeO2, all these differences induce only minor modulation of the dissolution rates. Only for TiO2 and SiO2, the interaction with specific organic acids is highly sensitive, probably due to sequestration of the ions, and can lead to wrong predictions when compared to the in vivo behavior. The media that fail on TiO2 and SiO2 dissolution use citric acid at concentrations above 5 g/L (up to 28 g/L). In the present selection of ENM, fluids, and methods, the different lysosomal simulant fluids did not induce changes of particle morphology, except for small changes in SiO2 and BaSO4 particles most likely due to ion dissolution, reprecipitation, and coalescence between neighboring particles. Based on the current evidence, the particle size by TEM analysis is not a sufficiently sensitive analytical method to deduce the rate of ENM dissolution in physiological media. In summary, we recommend the standardization of ENM dissolution testing by one of the three valid lysosomal simulant fluids with determination of the dissolution rate and halftime by the quantification of ions. This recommendation was established for a continuous flow system but may be relevant as well for static (batch) solubility testing.


Assuntos
Nanoestruturas , Óxido de Zinco , Ácido Cítrico , Íons , Lisossomos , Tamanho da Partícula , Padrões de Referência , Dióxido de Silício , Solubilidade
8.
Environ Sci Technol ; 56(16): 11323-11334, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35902073

RESUMO

Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Água , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(23): 16873-16884, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394826

RESUMO

The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles. Here, we investigated biodegradation in compost of different types of (T)PU to gain insights into their fragmentation and biodegradation mechanisms. The studied (T)PUs varied regarding the chemistry of their polymer backbone (aromatic/aliphatic), hard phase content, cross-linking degree, and presence of a hydrolysis-stabilizing additive. We developed and validated an efficient and non-destructive polymer particle extraction process for partially biodegraded (T)PUs based on ultrasonication and density separation. Our results showed that biodegradation rates and extents decreased with increasing cross-linking density and hard-segment content. We found that the presence of a hydrolysis stabilizer reduced (T)PU fragmentation while not affecting the conversion of (T)PU carbon into CO2. We propose a biodegradation mechanism for (T)PUs that includes both mother particle shrinkage by surface erosion and fragmentation. The presented results help to understand structure-degradation relationships of (T)PUs and support recycling strategies.


Assuntos
Plásticos , Poliuretanos , Humanos , Microplásticos , Polímeros , Biodegradação Ambiental , Supuração
10.
Part Fibre Toxicol ; 19(1): 68, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461106

RESUMO

BACKGROUND: Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS: The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS: The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.


Assuntos
Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Teorema de Bayes , Nanoestruturas/toxicidade , Medição de Risco , Inflamação
11.
Part Fibre Toxicol ; 19(1): 21, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321750

RESUMO

BACKGROUND: The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS: Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS: The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Animais , Peso Corporal , Masculino , Metaboloma , Nanopartículas Metálicas/toxicidade , Ratos , Ratos Wistar , Dióxido de Silício/toxicidade , Prata
12.
Toxicol Mech Methods ; 32(6): 439-452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35086424

RESUMO

Improved strategies are required for testing nanomaterials (NMs) to make hazard and risk assessment more efficient and sustainable. Including reduced reliance on animal models, without decreasing the level of human health protection. Acellular detection of reactive oxygen species (ROS) may be useful as a screening assay to prioritize NMs of high concern. To improve reliability and reproducibility, and minimize uncertainty, a standard operating procedure (SOP) has been developed for the detection of ROS using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay. The SOP has undergone an inter- and intra-laboratory comparison, to evaluate robustness, reliability, and reproducibility, using representative materials (ZnO, CuO, Mn2O3, and BaSO4 NMs), and a number of calibration tools to normalize data. The SOP includes an NM positive control (nanoparticle carbon black (NPCB)), a chemical positive control (SIN-1), and a standard curve of fluorescein fluorescence. The interlaboratory comparison demonstrated that arbitrary fluorescence units show high levels of partner variability; however, data normalization improved variability. With statistical analysis, it was shown that the SIN-1 positive control provided an extremely high level of reliability and reproducibility as a positive control and as a normalization tool. The NPCB positive control can be used with a relatively high level of reproducibility, and in terms of the representative materials, the reproducibility CuO induced-effects was better than for Mn2O3. Using this DCFH2-DA acellular assay SOP resulted in a robust intra-laboratory reproduction of ROS measurements from all NMs tested, while effective reproduction across different laboratories was also demonstrated; the effectiveness of attaining reproducibility within the interlaboratory assessment was particle-type-specific.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Bioensaio , Nanoestruturas/toxicidade , Espécies Reativas de Oxigênio , Reprodutibilidade dos Testes
13.
Small ; 17(15): e2005725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586349

RESUMO

Effects of nanomaterials are usually observed at higher concentrations in vitro compared to animal studies. This is pointing to differences between in vivo situations and generally less complex in vitro models. These differences concern toxicodynamics and the internal exposure (at the target cells of the in vitro and in vivo test system). The latter can be minimized by appropriate in vivo to in vitro dose extrapolations (IVIVE). An IVIVE six-step procedure is proposed here: 1) determine in vivo exposure; 2) identify in vivo organ burden at lowest observed adverse effect concentration; 3) extrapolate in vivo organ burden to in vitro effective dose; 4) extrapolate in vitro effective dose to nominal concentration; 5) set dose ranges to establish dose-response relationships; and 6) consider uncertainties and specificities of in vitro test system. Assessing the results of in vitro studies needs careful consideration of discrepancies between in vitro and in vivo models: apart from different endpoints (usually cellular responses in vitro and adverse effects on organs or organisms in vivo), nanomaterials can also have a different potency in relatively simple in vitro models and the more complex corresponding organ in vivo. IVIVE can, nonetheless, reduce the differences in exposures.


Assuntos
Nanoestruturas , Animais , Técnicas In Vitro , Nanoestruturas/toxicidade
14.
Small ; 17(15): e2004630, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475244

RESUMO

Would an engineered nanomaterial (ENM) still have the same identity once it reaches a secondary target tissue after a journey through several physiological compartments? Probably not. Does it matter? ENM pre-treatments may enhance the physiological relevance of in vitro testing via controlled transformation of the ENM identity. The implications of material transformation upon reactivity, cytotoxicity, inflammatory, and genotoxic potential of Ag and SiO2 ENM on advanced gastro-intestinal tract cell cultures and 3D liver spheroids are demonstrated. Pre-treatments are recommended for certain ENM only.


Assuntos
Nanoestruturas , Dióxido de Silício , Técnicas In Vitro , Fígado
15.
Chem Res Toxicol ; 34(3): 780-792, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33464877

RESUMO

The hazard potential, including carcinogenicity, of inhaled man-made vitreous fibers (MMVFs) is correlated with their biodurability in the lung, as prerequisite for biopersistence. Abiotic dissolution testing serves to predict biodurability. We re-analyzed the International Agency for Research on Cancer Monograph on MMVFs and found that the correlation between in vivo biopersistence and abiotic dissolution presented therein confounded different simulant fluids and further confounded evaluation of leaching vs structural elements. These are critical choices for abiotic dissolution testing, as are binder removal and the rate of the flow that removes ions during testing. Therefore, we experimentally demonstrated how fluid composition and binder affect abiotic dissolution of a representative stone wool MMVF. We compared six simulant fluids (all pH 4.5, reflecting the environment of alveolar macrophage lysosomes) that differed in organic acids, which have a critical role in their ability to modulate the formation of Si-rich gels on the fiber surfaces. Removing the binder accelerates the average dissolution rate by +104% (max. + 273%) across the fluids by suppression of gel formation. Apart from the high-citrate fluid that predicted a 10-fold faster dissolution than is observed in vivo, none of the five other fluids resulted in dissolution rates above 400 ng/cm2/h, the limit associated with the exoneration from classification for carcinogenicity in the literature. These findings were confirmed with and without binder. For corroboration, five more stone wool MMVFs were assessed with and without binder in one specific fluid. Again, the presence of the binder caused gel formation and reduced dissolution rates. To enhance the reliability and robustness of abiotic predictions of biodurability, we recommend replacing the critically influential citric acid in pH 4.5 fluids with other organic acids. Also, future studies should consider structural transformations of the fibers, including changes in fiber length, fiber composition, and reprecipitation of gel layers.


Assuntos
Líquidos Corporais/metabolismo , Macrófagos Alveolares/metabolismo , Fibras Minerais/análise , Animais , Líquidos Corporais/química , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Macrófagos Alveolares/química
16.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183029

RESUMO

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/patologia , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Albuminas , Proliferação de Células , Citocinas/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Testes de Mutagenicidade , Tamanho da Partícula , Ureia
17.
Regul Toxicol Pharmacol ; 124: 104988, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224799

RESUMO

Here, we present a non-animal testing battery to identify PSLT (poorly soluble, low toxicity) substances based on their solubility in phagolysosomal lung fluid simulant, surface reactivity and effects on alveolar macrophages in vitro. This is exemplified by eleven organic pigments belonging to five chemical classes that cover a significant share of the European market. Three of the pigments were tested as both, nanoform and non-nanoform. The results obtained in this integrated non-animal testing battery qualified two pigments as non PSLT, one pigment as poorly soluble and eight pigments as poorly soluble and low toxicity in vitro. The low toxic potency of the eight PSLT and the one poorly soluble pigment was corroborated by short-term inhalation studies with rats. These pigments did not elicit apparent toxic effects at 10 mg/m3 (systemic and in the respiratory tract). One of the pigments, Diarylide Pigment Yellow 83 transparent, however, caused minimal infiltration of neutrophils; hence its low toxicity is ambiguous and needs further verification or falsification. The present test battery provides an opportunity to identify PSLT-properties of test substances to prioritise particles for further development. Thus, it can help to reduce animal testing and steer product development towards safe applications.


Assuntos
Alternativas aos Testes com Animais/métodos , Corantes/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Administração por Inalação , Animais , Linhagem Celular , Corantes/química , Masculino , Tamanho da Partícula , Ratos , Solubilidade , Testes de Toxicidade Subaguda/métodos
18.
Small ; 16(36): e2002228, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743899

RESUMO

Identifying nanomaterials (NMs) according to European Union legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission's (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs.

19.
Arch Toxicol ; 94(7): 2463-2479, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307674

RESUMO

The plausibility of human exposure to microplastics has increased within the last years. Microplastics have been found in different food types including seafood, salt, sugar and beverages. So far, human health effects of microplastics after ingestion are unknown. Herein, we designed a novel, three-dimensional in vitro intestinal model consisting of the human intestinal epithelial cell lines Caco-2 and HT29-MTX-E12 as well as human blood monocyte-derived macrophages and dendritic cells that is suitable to assess the possible effects of ingested microplastics. Relevant microplastic particles (in the order of 50-500 µm), including polymers representing tire wear and polyolefins, which represent major sources of microplastic in the EU, were compared to other polymer classes and an inorganic microparticle, healing earth, which is intended for human consumption. Microplastic particles were exposed at concentrations of 823.5-1380.0 µg/cm2 to the model using a dry powder insufflator system to aerosolize the particles directly on the intestinal model's surface. Cytotoxicity was investigated after 6, 24 and 48 h of exposure via measuring the release of lactate dehydrogenase. Inflammatory end points including the cytokines IL-8, TNFα and IL-1ß as well as changes of the barrier integrity after exposure were additionally monitored. We demonstrated that all of the microplastics and the healing earth particles did not cause any significant cytotoxicity or release of (pro-)inflammatory cytokines and did not change the barrier integrity of the co-culture at any of the time points investigated.


Assuntos
Células Dendríticas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Microplásticos/toxicidade , Aerossóis , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Impedância Elétrica , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Tamanho da Partícula , Permeabilidade , Medição de Risco , Fatores de Tempo
20.
Polym Degrad Stab ; 1822020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36936609

RESUMO

The ultraviolet (UV)-induced degradation of graphene/polymer nanocomposites was investigated in this study. Specifically, the effect of few-layer graphene nanofillers on the degradation of a thermoplastic polyurethane (TPU) and the release potential of graphene from the degraded nanocomposite surfaces were assessed. Graphene/TPU (G/TPU) nanocomposites and neat TPU were UV-exposed under both dry and humid conditions in the NIST SPHERE, a precisely controlled, high intensity UV-weathering device. Neat TPU and G/TPU were characterized over the time course of UV exposure using color measurements and infrared spectroscopy, for appearance and chemical changes, respectively. Changes in thickness and surface morphology were obtained with scanning electron microscopy. A new fluorescence quenching measurement approach was developed to identify graphene sheets at the nanocomposite surface, which was supported by contact angle measurements. The potential for graphene release from the nanocomposite surface was evaluated using a tape-lift method followed by microscopy of any particles present on the tape. The findings suggest that graphene improves the service life of TPU with respect to UV exposure, but that graphene becomes exposed at the nanocomposite surface over time, which may potentially lead to its release when exposed to small mechanical forces or upon contact with other materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA